内窥镜视频辅助胃区识别方法

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiangwei Zheng, Dejian Su, Xuanchi Chen, Mingzhe Zhang
{"title":"内窥镜视频辅助胃区识别方法","authors":"Xiangwei Zheng,&nbsp;Dejian Su,&nbsp;Xuanchi Chen,&nbsp;Mingzhe Zhang","doi":"10.1016/j.jksuci.2024.102208","DOIUrl":null,"url":null,"abstract":"<div><div>Probe-based confocal laser endomicroscopy (pCLE) is a significant diagnostic instrument and is frequently utilized to diagnose the severity of gastric intestinal metaplasia (GIM). The physicians must comprehensively analyze video clips recorded with pCLE from the gastric antrum, gastric body, and gastric angle area to determine the patient’s condition. However, due to the limitations of the pCLE’s microscopic imaging structure, the gastric areas detected cannot be identified and recorded in real time, which may poses a risk of missing potential areas of disease occurrence and is not conducive to the subsequent precise treatment of the lesion area. Therefore, this paper proposes an endoscopic video aided identification method for identifying gastric areas (EVIGA), which are utilized for determining the detected areas of pCLE in real-time. Firstly, the start time of the diagnosis clip is determined by real-time detecting the working states of pCLE. Then, the endoscopic video clip is truncated according to the correspondence between pCLE and endoscopic video in the time sequence for detecting gastric areas. In order to accurately identify pCLE detected gastric areas, a probe-based confocal laser endomicroscopy diagnosis area identification model (pCLEDAM) is constructed with an hourglass convolution designed for single-frame feature extraction and a temporal feature-sensitive extraction structure for spatial feature extraction. The extracted feature maps are unfolded and fed into the fully connected layer to classify the detected areas. To validate the proposed method, 67 clinical confocal laser endomicroscopy diagnosis cases are collected from a tertiary care hospital, and 500 video clips are finally reserved after audited for dataset construction. Experiments show that the accuracy of area identification on the test dataset achieves 96.0% and is much higher than other related algorithms, achieving the accurate identification of pCLE detected areas.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endoscopic video aided identification method for gastric area\",\"authors\":\"Xiangwei Zheng,&nbsp;Dejian Su,&nbsp;Xuanchi Chen,&nbsp;Mingzhe Zhang\",\"doi\":\"10.1016/j.jksuci.2024.102208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Probe-based confocal laser endomicroscopy (pCLE) is a significant diagnostic instrument and is frequently utilized to diagnose the severity of gastric intestinal metaplasia (GIM). The physicians must comprehensively analyze video clips recorded with pCLE from the gastric antrum, gastric body, and gastric angle area to determine the patient’s condition. However, due to the limitations of the pCLE’s microscopic imaging structure, the gastric areas detected cannot be identified and recorded in real time, which may poses a risk of missing potential areas of disease occurrence and is not conducive to the subsequent precise treatment of the lesion area. Therefore, this paper proposes an endoscopic video aided identification method for identifying gastric areas (EVIGA), which are utilized for determining the detected areas of pCLE in real-time. Firstly, the start time of the diagnosis clip is determined by real-time detecting the working states of pCLE. Then, the endoscopic video clip is truncated according to the correspondence between pCLE and endoscopic video in the time sequence for detecting gastric areas. In order to accurately identify pCLE detected gastric areas, a probe-based confocal laser endomicroscopy diagnosis area identification model (pCLEDAM) is constructed with an hourglass convolution designed for single-frame feature extraction and a temporal feature-sensitive extraction structure for spatial feature extraction. The extracted feature maps are unfolded and fed into the fully connected layer to classify the detected areas. To validate the proposed method, 67 clinical confocal laser endomicroscopy diagnosis cases are collected from a tertiary care hospital, and 500 video clips are finally reserved after audited for dataset construction. Experiments show that the accuracy of area identification on the test dataset achieves 96.0% and is much higher than other related algorithms, achieving the accurate identification of pCLE detected areas.</div></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002970\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002970","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

探针共焦激光内窥镜(pCLE)是一种重要的诊断仪器,经常被用来诊断胃肠变性(GIM)的严重程度。医生必须全面分析 pCLE 从胃窦、胃体和胃角区域记录的视频片段,以确定患者的病情。然而,由于pCLE显微成像结构的局限性,所检测到的胃部区域无法被实时识别和记录,有可能遗漏潜在的疾病发生区域,不利于后续对病变区域的精确治疗。因此,本文提出了一种内镜视频辅助胃区识别方法(EVIGA),用于实时确定检测到的胃癌病变区域。首先,通过实时检测 pCLE 的工作状态来确定诊断片段的开始时间。然后,根据 pCLE 和内窥镜视频在时间序列上的对应关系截断内窥镜视频片段,以检测胃部区域。为了准确识别 pCLE 检测到的胃区,构建了一个基于探针的共聚焦激光内窥镜诊断区域识别模型(pCLEDAM),其沙漏卷积设计用于单帧特征提取,时间特征敏感提取结构用于空间特征提取。提取的特征图被展开并输入全连接层,对检测到的区域进行分类。为了验证所提出的方法,从一家三甲医院收集了 67 个临床共焦激光内窥镜诊断病例,经审核后最终保留了 500 个视频片段用于数据集构建。实验表明,测试数据集的区域识别准确率达到 96.0%,远高于其他相关算法,实现了对 pCLE 检测区域的准确识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endoscopic video aided identification method for gastric area
Probe-based confocal laser endomicroscopy (pCLE) is a significant diagnostic instrument and is frequently utilized to diagnose the severity of gastric intestinal metaplasia (GIM). The physicians must comprehensively analyze video clips recorded with pCLE from the gastric antrum, gastric body, and gastric angle area to determine the patient’s condition. However, due to the limitations of the pCLE’s microscopic imaging structure, the gastric areas detected cannot be identified and recorded in real time, which may poses a risk of missing potential areas of disease occurrence and is not conducive to the subsequent precise treatment of the lesion area. Therefore, this paper proposes an endoscopic video aided identification method for identifying gastric areas (EVIGA), which are utilized for determining the detected areas of pCLE in real-time. Firstly, the start time of the diagnosis clip is determined by real-time detecting the working states of pCLE. Then, the endoscopic video clip is truncated according to the correspondence between pCLE and endoscopic video in the time sequence for detecting gastric areas. In order to accurately identify pCLE detected gastric areas, a probe-based confocal laser endomicroscopy diagnosis area identification model (pCLEDAM) is constructed with an hourglass convolution designed for single-frame feature extraction and a temporal feature-sensitive extraction structure for spatial feature extraction. The extracted feature maps are unfolded and fed into the fully connected layer to classify the detected areas. To validate the proposed method, 67 clinical confocal laser endomicroscopy diagnosis cases are collected from a tertiary care hospital, and 500 video clips are finally reserved after audited for dataset construction. Experiments show that the accuracy of area identification on the test dataset achieves 96.0% and is much higher than other related algorithms, achieving the accurate identification of pCLE detected areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信