{"title":"构建新型β-XY(X = Ge、Sn,Y = S)/g-C3N4 异质结构:高效的可见光驱动型水分离催化剂","authors":"Wen.Xue Zhang , Wei.Wei Wang , Cheng. He","doi":"10.1016/j.surfin.2024.105194","DOIUrl":null,"url":null,"abstract":"<div><div>The logical design of inexpensive, non-polluting, and extremely effective photocatalysts is a crucial step toward achieving clean energy. The currently low solar-to-hydrogen (STH) conversion efficiency (<em>η<sub>STH</sub></em>) makes hydrogen production technologies less than optimal. Herein, novel β-XY (X = Ge, Sn, Y = S)/g-C<sub>3</sub>N<sub>4</sub> heterostructures have been constructed. Among them, the β-SnS/g-C<sub>3</sub>N<sub>4</sub> exhibits low carrier recombination, and its geometry, optoelectronic properties, as well as the thermodynamic feasibility of its reaction, have been thoroughly examined through DFT calculations. The results demonstrate that the β-SnS/g-C<sub>3</sub>N<sub>4</sub> heterostructure is a type-II heterostructure, exhibiting an indirect band gap of 2.57 eV. Photocatalysis is more efficient because of the built-in electric field that extends from the g-C<sub>3</sub>N<sub>4</sub> monolayer to the β-SnS monolayer, effectively separating electrons and holes. The continuously decreasing free energy validates the thermodynamic spontaneity of water splitting. Additionally, the heterostructure demonstrates robust absorption in both the visible and UV ranges. Notably, the <em>η<sub>STH</sub></em> of 15.54 % underscores the commercial viability of this material. These findings thus suggest that β-SnS/g-C<sub>3</sub>N<sub>4</sub> heterostructure is a good candidate material for water splitting via photocatalysis.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"54 ","pages":"Article 105194"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Construction of novel β-XY (X = Ge, Sn, Y = S)/g-C3N4 heterostructures: efficient visible light-driven water splitting catalysts\",\"authors\":\"Wen.Xue Zhang , Wei.Wei Wang , Cheng. He\",\"doi\":\"10.1016/j.surfin.2024.105194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The logical design of inexpensive, non-polluting, and extremely effective photocatalysts is a crucial step toward achieving clean energy. The currently low solar-to-hydrogen (STH) conversion efficiency (<em>η<sub>STH</sub></em>) makes hydrogen production technologies less than optimal. Herein, novel β-XY (X = Ge, Sn, Y = S)/g-C<sub>3</sub>N<sub>4</sub> heterostructures have been constructed. Among them, the β-SnS/g-C<sub>3</sub>N<sub>4</sub> exhibits low carrier recombination, and its geometry, optoelectronic properties, as well as the thermodynamic feasibility of its reaction, have been thoroughly examined through DFT calculations. The results demonstrate that the β-SnS/g-C<sub>3</sub>N<sub>4</sub> heterostructure is a type-II heterostructure, exhibiting an indirect band gap of 2.57 eV. Photocatalysis is more efficient because of the built-in electric field that extends from the g-C<sub>3</sub>N<sub>4</sub> monolayer to the β-SnS monolayer, effectively separating electrons and holes. The continuously decreasing free energy validates the thermodynamic spontaneity of water splitting. Additionally, the heterostructure demonstrates robust absorption in both the visible and UV ranges. Notably, the <em>η<sub>STH</sub></em> of 15.54 % underscores the commercial viability of this material. These findings thus suggest that β-SnS/g-C<sub>3</sub>N<sub>4</sub> heterostructure is a good candidate material for water splitting via photocatalysis.</div></div>\",\"PeriodicalId\":22081,\"journal\":{\"name\":\"Surfaces and Interfaces\",\"volume\":\"54 \",\"pages\":\"Article 105194\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surfaces and Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024013506\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024013506","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Construction of novel β-XY (X = Ge, Sn, Y = S)/g-C3N4 heterostructures: efficient visible light-driven water splitting catalysts
The logical design of inexpensive, non-polluting, and extremely effective photocatalysts is a crucial step toward achieving clean energy. The currently low solar-to-hydrogen (STH) conversion efficiency (ηSTH) makes hydrogen production technologies less than optimal. Herein, novel β-XY (X = Ge, Sn, Y = S)/g-C3N4 heterostructures have been constructed. Among them, the β-SnS/g-C3N4 exhibits low carrier recombination, and its geometry, optoelectronic properties, as well as the thermodynamic feasibility of its reaction, have been thoroughly examined through DFT calculations. The results demonstrate that the β-SnS/g-C3N4 heterostructure is a type-II heterostructure, exhibiting an indirect band gap of 2.57 eV. Photocatalysis is more efficient because of the built-in electric field that extends from the g-C3N4 monolayer to the β-SnS monolayer, effectively separating electrons and holes. The continuously decreasing free energy validates the thermodynamic spontaneity of water splitting. Additionally, the heterostructure demonstrates robust absorption in both the visible and UV ranges. Notably, the ηSTH of 15.54 % underscores the commercial viability of this material. These findings thus suggest that β-SnS/g-C3N4 heterostructure is a good candidate material for water splitting via photocatalysis.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)