Yichen Pu , Shengwei Zheng , Xinjie Hu , Shan Tang , Ning An
{"title":"受辅助超材料启发的机器人皮肤,用于软致动器的可编程弯曲","authors":"Yichen Pu , Shengwei Zheng , Xinjie Hu , Shan Tang , Ning An","doi":"10.1016/j.matdes.2024.113334","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a class of robotic skins inspired by auxetic metamaterials, which enable programmable bending in soft pneumatic actuators. The efficiency of these robotic skins in controlling bending curvature and hoop expansion of the soft actuators is demonstrated through a combination of experiments and numerical simulations. Parametric studies are then performed to explore how variations in the geometric parameters of the metamaterial skin affect the performance of the bending actuators. Specifically, our study demonstrates that a range of bending curvatures (0.0077 mm<sup>−1</sup> to 0.0097 mm<sup>−1</sup>) and cross-section diameters (38.4 mm to 44.0 mm) can be achieved by adjusting the unit cell numbers of metamaterial skin in the vertical and hoop directions for bending a 2 mm-thickness-walled inflatable cylindrical tube, which is characterized by an initial length of 104.3 mm, an initial cross-section diameter of 29.0 mm, and at an inflation volume of 75 mL. Moreover, a variety of bio-inspired soft actuators exhibiting complex bending behaviors are presented. The work demonstrates the effectiveness of the proposed strategy for achieving customized curved bending and shape-morphing by adjusting the geometric parameters and arrangement of the unit cells in the metamaterial skins.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"246 ","pages":"Article 113334"},"PeriodicalIF":7.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic skins inspired by auxetic metamaterials for programmable bending of soft actuators\",\"authors\":\"Yichen Pu , Shengwei Zheng , Xinjie Hu , Shan Tang , Ning An\",\"doi\":\"10.1016/j.matdes.2024.113334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents a class of robotic skins inspired by auxetic metamaterials, which enable programmable bending in soft pneumatic actuators. The efficiency of these robotic skins in controlling bending curvature and hoop expansion of the soft actuators is demonstrated through a combination of experiments and numerical simulations. Parametric studies are then performed to explore how variations in the geometric parameters of the metamaterial skin affect the performance of the bending actuators. Specifically, our study demonstrates that a range of bending curvatures (0.0077 mm<sup>−1</sup> to 0.0097 mm<sup>−1</sup>) and cross-section diameters (38.4 mm to 44.0 mm) can be achieved by adjusting the unit cell numbers of metamaterial skin in the vertical and hoop directions for bending a 2 mm-thickness-walled inflatable cylindrical tube, which is characterized by an initial length of 104.3 mm, an initial cross-section diameter of 29.0 mm, and at an inflation volume of 75 mL. Moreover, a variety of bio-inspired soft actuators exhibiting complex bending behaviors are presented. The work demonstrates the effectiveness of the proposed strategy for achieving customized curved bending and shape-morphing by adjusting the geometric parameters and arrangement of the unit cells in the metamaterial skins.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"246 \",\"pages\":\"Article 113334\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524007093\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524007093","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Robotic skins inspired by auxetic metamaterials for programmable bending of soft actuators
This paper presents a class of robotic skins inspired by auxetic metamaterials, which enable programmable bending in soft pneumatic actuators. The efficiency of these robotic skins in controlling bending curvature and hoop expansion of the soft actuators is demonstrated through a combination of experiments and numerical simulations. Parametric studies are then performed to explore how variations in the geometric parameters of the metamaterial skin affect the performance of the bending actuators. Specifically, our study demonstrates that a range of bending curvatures (0.0077 mm−1 to 0.0097 mm−1) and cross-section diameters (38.4 mm to 44.0 mm) can be achieved by adjusting the unit cell numbers of metamaterial skin in the vertical and hoop directions for bending a 2 mm-thickness-walled inflatable cylindrical tube, which is characterized by an initial length of 104.3 mm, an initial cross-section diameter of 29.0 mm, and at an inflation volume of 75 mL. Moreover, a variety of bio-inspired soft actuators exhibiting complex bending behaviors are presented. The work demonstrates the effectiveness of the proposed strategy for achieving customized curved bending and shape-morphing by adjusting the geometric parameters and arrangement of the unit cells in the metamaterial skins.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.