Yuzhen Hu , Zhenlong Song , Peng Zheng , Qi Zhang , Jianguo Liu
{"title":"利用基于 TiO2 的催化剂通过绿色光催化将苯乙烯选择性氧化为有价值的 C7 或 C8 芳烃","authors":"Yuzhen Hu , Zhenlong Song , Peng Zheng , Qi Zhang , Jianguo Liu","doi":"10.1016/j.mcat.2024.114585","DOIUrl":null,"url":null,"abstract":"<div><div>The selective oxidation of styrene at its side chains to yield value-added C<sub>7</sub> or C<sub>8</sub> aromatic compounds represents a crucial reaction within the chemical industry. However, achieving precise control over product formation selectivity poses a significant challenge. In this study, we demonstrate the effectiveness of ultra-small nanosized TiO<sub>2</sub>-based catalysts in facilitating the selective oxidation of styrene through a mild, eco-friendly photocatalytic approach. Following modification with 0.4% NiO, a notable transformation in product selectivity is observed. The primary products shift from C<sub>8</sub> with 96% selectivity to C<sub>7</sub> with 92% selectivity under UV, and even sunlight-type excitation. Detailed structural and electronic analyses reveal that the incorporation of NiO onto the TiO<sub>2</sub> surface induces the formation of a P-N heterojunction and additional active sites, crucial for promoting C-C cleavage, leading to a selectivity shift from C<sub>8</sub> to C<sub>7</sub> products. This research provides valuable insights into the design of simple TiO<sub>2</sub>-based catalysts capable of achieving high selectivity in the oxidation of styrene, highlighting the potential of green photocatalysis in industrial applications.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":"569 ","pages":"Article 114585"},"PeriodicalIF":3.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective oxidation of styrene to valuable C7 or C8 aromatics via green photocatalysis with TiO2-based catalysts\",\"authors\":\"Yuzhen Hu , Zhenlong Song , Peng Zheng , Qi Zhang , Jianguo Liu\",\"doi\":\"10.1016/j.mcat.2024.114585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The selective oxidation of styrene at its side chains to yield value-added C<sub>7</sub> or C<sub>8</sub> aromatic compounds represents a crucial reaction within the chemical industry. However, achieving precise control over product formation selectivity poses a significant challenge. In this study, we demonstrate the effectiveness of ultra-small nanosized TiO<sub>2</sub>-based catalysts in facilitating the selective oxidation of styrene through a mild, eco-friendly photocatalytic approach. Following modification with 0.4% NiO, a notable transformation in product selectivity is observed. The primary products shift from C<sub>8</sub> with 96% selectivity to C<sub>7</sub> with 92% selectivity under UV, and even sunlight-type excitation. Detailed structural and electronic analyses reveal that the incorporation of NiO onto the TiO<sub>2</sub> surface induces the formation of a P-N heterojunction and additional active sites, crucial for promoting C-C cleavage, leading to a selectivity shift from C<sub>8</sub> to C<sub>7</sub> products. This research provides valuable insights into the design of simple TiO<sub>2</sub>-based catalysts capable of achieving high selectivity in the oxidation of styrene, highlighting the potential of green photocatalysis in industrial applications.</div></div>\",\"PeriodicalId\":393,\"journal\":{\"name\":\"Molecular Catalysis\",\"volume\":\"569 \",\"pages\":\"Article 114585\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468823124007673\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124007673","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Selective oxidation of styrene to valuable C7 or C8 aromatics via green photocatalysis with TiO2-based catalysts
The selective oxidation of styrene at its side chains to yield value-added C7 or C8 aromatic compounds represents a crucial reaction within the chemical industry. However, achieving precise control over product formation selectivity poses a significant challenge. In this study, we demonstrate the effectiveness of ultra-small nanosized TiO2-based catalysts in facilitating the selective oxidation of styrene through a mild, eco-friendly photocatalytic approach. Following modification with 0.4% NiO, a notable transformation in product selectivity is observed. The primary products shift from C8 with 96% selectivity to C7 with 92% selectivity under UV, and even sunlight-type excitation. Detailed structural and electronic analyses reveal that the incorporation of NiO onto the TiO2 surface induces the formation of a P-N heterojunction and additional active sites, crucial for promoting C-C cleavage, leading to a selectivity shift from C8 to C7 products. This research provides valuable insights into the design of simple TiO2-based catalysts capable of achieving high selectivity in the oxidation of styrene, highlighting the potential of green photocatalysis in industrial applications.
期刊介绍:
Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are:
Heterogeneous catalysis including immobilized molecular catalysts
Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis
Photo- and electrochemistry
Theoretical aspects of catalysis analyzed by computational methods