{"title":"有序紧密超路径的图兰数","authors":"John P. Bright, Kevin G. Milans, Jackson Porter","doi":"10.1016/j.ejc.2024.104070","DOIUrl":null,"url":null,"abstract":"<div><div>An <em>ordered hypergraph</em> is a hypergraph <span><math><mi>G</mi></math></span> whose vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is linearly ordered. We find the Turán numbers for the <span><math><mi>r</mi></math></span>-uniform <span><math><mi>s</mi></math></span>-vertex tight path <span><math><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup></math></span> (with vertices in the natural order) exactly when <span><math><mrow><mi>r</mi><mo>≤</mo><mi>s</mi><mo><</mo><mn>2</mn><mi>r</mi></mrow></math></span> and <span><math><mi>n</mi></math></span> is even; our results imply <span><math><mrow><mover><mrow><mi>ex</mi></mrow><mo>→</mo></mover><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi><mo>−</mo><mi>r</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> when <span><math><mrow><mi>r</mi><mo>≤</mo><mi>s</mi><mo><</mo><mn>2</mn><mi>r</mi></mrow></math></span>. When <span><math><mrow><mi>s</mi><mo>≥</mo><mn>2</mn><mi>r</mi></mrow></math></span>, the asymptotics of <span><math><mrow><mover><mrow><mi>ex</mi></mrow><mo>→</mo></mover><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow></mrow></math></span> remain open. For <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span>, we give a construction of an <span><math><mi>r</mi></math></span>-uniform <span><math><mi>n</mi></math></span>-vertex hypergraph not containing <span><math><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup></math></span> which we conjecture to be asymptotically extremal.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán numbers of ordered tight hyperpaths\",\"authors\":\"John P. Bright, Kevin G. Milans, Jackson Porter\",\"doi\":\"10.1016/j.ejc.2024.104070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An <em>ordered hypergraph</em> is a hypergraph <span><math><mi>G</mi></math></span> whose vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is linearly ordered. We find the Turán numbers for the <span><math><mi>r</mi></math></span>-uniform <span><math><mi>s</mi></math></span>-vertex tight path <span><math><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup></math></span> (with vertices in the natural order) exactly when <span><math><mrow><mi>r</mi><mo>≤</mo><mi>s</mi><mo><</mo><mn>2</mn><mi>r</mi></mrow></math></span> and <span><math><mi>n</mi></math></span> is even; our results imply <span><math><mrow><mover><mrow><mi>ex</mi></mrow><mo>→</mo></mover><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>s</mi><mo>−</mo><mi>r</mi></mrow></msup></mrow></mfrac><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mfenced><mrow><mfrac><mrow><mi>n</mi></mrow><mrow><mi>r</mi></mrow></mfrac></mrow></mfenced></mrow></math></span> when <span><math><mrow><mi>r</mi><mo>≤</mo><mi>s</mi><mo><</mo><mn>2</mn><mi>r</mi></mrow></math></span>. When <span><math><mrow><mi>s</mi><mo>≥</mo><mn>2</mn><mi>r</mi></mrow></math></span>, the asymptotics of <span><math><mrow><mover><mrow><mi>ex</mi></mrow><mo>→</mo></mover><mrow><mo>(</mo><mi>n</mi><mo>,</mo><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow></mrow></math></span> remain open. For <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span>, we give a construction of an <span><math><mi>r</mi></math></span>-uniform <span><math><mi>n</mi></math></span>-vertex hypergraph not containing <span><math><msubsup><mrow><mover><mrow><mi>P</mi></mrow><mo>→</mo></mover></mrow><mrow><mi>s</mi></mrow><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup></math></span> which we conjecture to be asymptotically extremal.</div></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824001550\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824001550","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
An ordered hypergraph is a hypergraph whose vertex set is linearly ordered. We find the Turán numbers for the -uniform -vertex tight path (with vertices in the natural order) exactly when and is even; our results imply when . When , the asymptotics of remain open. For , we give a construction of an -uniform -vertex hypergraph not containing which we conjecture to be asymptotically extremal.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.