{"title":"电子和γ-量子激发的 Sc1.318Y0.655Si1.013O4.987 晶体本征发光中的非线性闪烁效应","authors":"M.V. Belov , V.A. Kozlov , N.V. Pestovskii , S.Yu. Savinov , V.S. Tskhay , V.I. Vlasov , A.I. Zagumennyi , Yu.D. Zavartsev , M.V. Zavertyaev","doi":"10.1016/j.jlumin.2024.120919","DOIUrl":null,"url":null,"abstract":"<div><div>The spectral and kinetic properties of intrinsic luminescence from (Y<sub>2</sub>Sc<sub>1</sub>)<sub>0.(3)</sub>(Sc)[Si]O<sub>5</sub> crystal are studied. The emission is excited by electrons and <em>γ</em>-quanta. The composition (Y<sub>2</sub>Sc<sub>1</sub>)<sub>0.(3)</sub>(Sc)[Si]O<sub>5</sub> is the congruent one for Sc<sub>2</sub>SiO<sub>5</sub>-Y<sub>2</sub>SiO<sub>5</sub> solid solutions. It is found, that the crystal emits fairly bright intrinsic cathodololuminescence (CL) and radioluminescence (RL) at room temperature. In particular, the light yield of scintillation excited by <em>γ</em>-quanta with the energies of 661.7 keV is of 12000 photons/MeV. An increase in the beam flux by ∼20 times leads to the shift in the maximal CL energy spectral density from 315 to 340 nm and to the decrease in the CL decay time at 415 nm from 1377 ± 3 ns to 1165 ± 1 ns. Simultaneously, the decay time of RL excited by a photoelectron with the energy of 644.7 keV is of 1310 ± 10 ns while a Compton electron with the energy of 477 keV excites RL with the decay time of 1050 ± 10 ns. Also, we observed differences in the CL yield dependencies on the volume-averaged density of electronic excitations (EEs) at different wavelengths. An explanation of the results is given considering the nonlinear scintillation phenomena induced by an interaction between EEs. It is based on a conception that an increase in EE volume density leads to an increase in EEs nonradiative quenching due to these interactions.</div></div>","PeriodicalId":16159,"journal":{"name":"Journal of Luminescence","volume":"277 ","pages":"Article 120919"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear scintillation effects in the intrinsic luminescence from Sc1.318Y0.655Si1.013O4.987 crystal excited by electrons and γ-quanta\",\"authors\":\"M.V. Belov , V.A. Kozlov , N.V. Pestovskii , S.Yu. Savinov , V.S. Tskhay , V.I. Vlasov , A.I. Zagumennyi , Yu.D. Zavartsev , M.V. Zavertyaev\",\"doi\":\"10.1016/j.jlumin.2024.120919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The spectral and kinetic properties of intrinsic luminescence from (Y<sub>2</sub>Sc<sub>1</sub>)<sub>0.(3)</sub>(Sc)[Si]O<sub>5</sub> crystal are studied. The emission is excited by electrons and <em>γ</em>-quanta. The composition (Y<sub>2</sub>Sc<sub>1</sub>)<sub>0.(3)</sub>(Sc)[Si]O<sub>5</sub> is the congruent one for Sc<sub>2</sub>SiO<sub>5</sub>-Y<sub>2</sub>SiO<sub>5</sub> solid solutions. It is found, that the crystal emits fairly bright intrinsic cathodololuminescence (CL) and radioluminescence (RL) at room temperature. In particular, the light yield of scintillation excited by <em>γ</em>-quanta with the energies of 661.7 keV is of 12000 photons/MeV. An increase in the beam flux by ∼20 times leads to the shift in the maximal CL energy spectral density from 315 to 340 nm and to the decrease in the CL decay time at 415 nm from 1377 ± 3 ns to 1165 ± 1 ns. Simultaneously, the decay time of RL excited by a photoelectron with the energy of 644.7 keV is of 1310 ± 10 ns while a Compton electron with the energy of 477 keV excites RL with the decay time of 1050 ± 10 ns. Also, we observed differences in the CL yield dependencies on the volume-averaged density of electronic excitations (EEs) at different wavelengths. An explanation of the results is given considering the nonlinear scintillation phenomena induced by an interaction between EEs. It is based on a conception that an increase in EE volume density leads to an increase in EEs nonradiative quenching due to these interactions.</div></div>\",\"PeriodicalId\":16159,\"journal\":{\"name\":\"Journal of Luminescence\",\"volume\":\"277 \",\"pages\":\"Article 120919\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Luminescence\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022231324004836\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Luminescence","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022231324004836","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Nonlinear scintillation effects in the intrinsic luminescence from Sc1.318Y0.655Si1.013O4.987 crystal excited by electrons and γ-quanta
The spectral and kinetic properties of intrinsic luminescence from (Y2Sc1)0.(3)(Sc)[Si]O5 crystal are studied. The emission is excited by electrons and γ-quanta. The composition (Y2Sc1)0.(3)(Sc)[Si]O5 is the congruent one for Sc2SiO5-Y2SiO5 solid solutions. It is found, that the crystal emits fairly bright intrinsic cathodololuminescence (CL) and radioluminescence (RL) at room temperature. In particular, the light yield of scintillation excited by γ-quanta with the energies of 661.7 keV is of 12000 photons/MeV. An increase in the beam flux by ∼20 times leads to the shift in the maximal CL energy spectral density from 315 to 340 nm and to the decrease in the CL decay time at 415 nm from 1377 ± 3 ns to 1165 ± 1 ns. Simultaneously, the decay time of RL excited by a photoelectron with the energy of 644.7 keV is of 1310 ± 10 ns while a Compton electron with the energy of 477 keV excites RL with the decay time of 1050 ± 10 ns. Also, we observed differences in the CL yield dependencies on the volume-averaged density of electronic excitations (EEs) at different wavelengths. An explanation of the results is given considering the nonlinear scintillation phenomena induced by an interaction between EEs. It is based on a conception that an increase in EE volume density leads to an increase in EEs nonradiative quenching due to these interactions.
期刊介绍:
The purpose of the Journal of Luminescence is to provide a means of communication between scientists in different disciplines who share a common interest in the electronic excited states of molecular, ionic and covalent systems, whether crystalline, amorphous, or liquid.
We invite original papers and reviews on such subjects as: exciton and polariton dynamics, dynamics of localized excited states, energy and charge transport in ordered and disordered systems, radiative and non-radiative recombination, relaxation processes, vibronic interactions in electronic excited states, photochemistry in condensed systems, excited state resonance, double resonance, spin dynamics, selective excitation spectroscopy, hole burning, coherent processes in excited states, (e.g. coherent optical transients, photon echoes, transient gratings), multiphoton processes, optical bistability, photochromism, and new techniques for the study of excited states. This list is not intended to be exhaustive. Papers in the traditional areas of optical spectroscopy (absorption, MCD, luminescence, Raman scattering) are welcome. Papers on applications (phosphors, scintillators, electro- and cathodo-luminescence, radiography, bioimaging, solar energy, energy conversion, etc.) are also welcome if they present results of scientific, rather than only technological interest. However, papers containing purely theoretical results, not related to phenomena in the excited states, as well as papers using luminescence spectroscopy to perform routine analytical chemistry or biochemistry procedures, are outside the scope of the journal. Some exceptions will be possible at the discretion of the editors.