{"title":"从本体角度看赫米特和拉盖尔贝塞尔函数理论","authors":"M. Artioli , G. Dattoli , U. Zainab","doi":"10.1016/j.amc.2024.129103","DOIUrl":null,"url":null,"abstract":"<div><div>The theoretical underpinnings of hybrid families of special functions are examined through an umbral reformulation. Our discussion encompasses diverse families of Bessel-type functions and special polynomials, all situated within a unifying umbral-algebraic formalism. The method presented capitalizes on recent advancements in the formal treatment of higher transcendental functions, enabling novel and intriguing generalizations.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory of Hermite and Laguerre Bessel function from the umbral point of view\",\"authors\":\"M. Artioli , G. Dattoli , U. Zainab\",\"doi\":\"10.1016/j.amc.2024.129103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The theoretical underpinnings of hybrid families of special functions are examined through an umbral reformulation. Our discussion encompasses diverse families of Bessel-type functions and special polynomials, all situated within a unifying umbral-algebraic formalism. The method presented capitalizes on recent advancements in the formal treatment of higher transcendental functions, enabling novel and intriguing generalizations.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005642\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005642","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Theory of Hermite and Laguerre Bessel function from the umbral point of view
The theoretical underpinnings of hybrid families of special functions are examined through an umbral reformulation. Our discussion encompasses diverse families of Bessel-type functions and special polynomials, all situated within a unifying umbral-algebraic formalism. The method presented capitalizes on recent advancements in the formal treatment of higher transcendental functions, enabling novel and intriguing generalizations.