Yixin Xu , Shaowei Zheng , Zinan Tang , Qiang Zhong , Rong Chen , Pinkai Wang , Jinlang Fu , Jiajun Xie , Yanhong Ning , Mingyuan Lei , Ding Wang , Huaming Mai , Hao Li , Chunhan Sun , Zhanjun Shi , Hao Cheng , Zhe Shi
{"title":"可注射、释放氧气、热敏性水凝胶可促进血管化骨形成,延长氧气输送时间,提高骨诱导性","authors":"Yixin Xu , Shaowei Zheng , Zinan Tang , Qiang Zhong , Rong Chen , Pinkai Wang , Jinlang Fu , Jiajun Xie , Yanhong Ning , Mingyuan Lei , Ding Wang , Huaming Mai , Hao Li , Chunhan Sun , Zhanjun Shi , Hao Cheng , Zhe Shi","doi":"10.1016/j.mtbio.2024.101267","DOIUrl":null,"url":null,"abstract":"<div><div>The failure or delay in healing of critical bone defects is primarily due to early local anoxic conditions and reduced osteogenic activity. In this research, we integrated calcium peroxide (CPO) embedded polycaprolactone (PCL) microspheres and osteoinductive nanoparticles (Hydroxyapatite/Laponite) into a thermosensitive hydrogel (Pluronic F127), thereby formulating an injectable oxygen-releasing osteogenic thermosensitive hydrogel. Notably, the oxygen-releasing microspheres (ORMs) within the composite hydrogel provide stable oxygen release for up to 21 days, ensuring the survival, migration, and bioactivity of both mesenchymal stem cells and endothelial cells under anoxic conditions. Additionally, the composite hydrogel significantly augments the osteogenic potential of bone marrow mesenchymal stem cells by providing a biomimetic microenvironment with the incorporation of nano-hydroxyapatite/laponite. Ultimately, the injectable composite hydrogel successfully stimulated bone regeneration within a cranial defect in a rat model after 8 weeks, with enhanced vascularization and bone quality. The engineered hydrogel provides a minimally invasive approach to stimulate bone regeneration with a sustained oxygen supply and osteogenic microenvironment provision, underlining its potential for treating critical bone defects.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101267"},"PeriodicalIF":8.7000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Injectable, oxygen-releasing, thermosensitive hydrogel promotes vascularized bone formation with prolonged oxygen delivery and improved osteoinductivity\",\"authors\":\"Yixin Xu , Shaowei Zheng , Zinan Tang , Qiang Zhong , Rong Chen , Pinkai Wang , Jinlang Fu , Jiajun Xie , Yanhong Ning , Mingyuan Lei , Ding Wang , Huaming Mai , Hao Li , Chunhan Sun , Zhanjun Shi , Hao Cheng , Zhe Shi\",\"doi\":\"10.1016/j.mtbio.2024.101267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The failure or delay in healing of critical bone defects is primarily due to early local anoxic conditions and reduced osteogenic activity. In this research, we integrated calcium peroxide (CPO) embedded polycaprolactone (PCL) microspheres and osteoinductive nanoparticles (Hydroxyapatite/Laponite) into a thermosensitive hydrogel (Pluronic F127), thereby formulating an injectable oxygen-releasing osteogenic thermosensitive hydrogel. Notably, the oxygen-releasing microspheres (ORMs) within the composite hydrogel provide stable oxygen release for up to 21 days, ensuring the survival, migration, and bioactivity of both mesenchymal stem cells and endothelial cells under anoxic conditions. Additionally, the composite hydrogel significantly augments the osteogenic potential of bone marrow mesenchymal stem cells by providing a biomimetic microenvironment with the incorporation of nano-hydroxyapatite/laponite. Ultimately, the injectable composite hydrogel successfully stimulated bone regeneration within a cranial defect in a rat model after 8 weeks, with enhanced vascularization and bone quality. The engineered hydrogel provides a minimally invasive approach to stimulate bone regeneration with a sustained oxygen supply and osteogenic microenvironment provision, underlining its potential for treating critical bone defects.</div></div>\",\"PeriodicalId\":18310,\"journal\":{\"name\":\"Materials Today Bio\",\"volume\":\"29 \",\"pages\":\"Article 101267\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Bio\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590006424003284\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424003284","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Injectable, oxygen-releasing, thermosensitive hydrogel promotes vascularized bone formation with prolonged oxygen delivery and improved osteoinductivity
The failure or delay in healing of critical bone defects is primarily due to early local anoxic conditions and reduced osteogenic activity. In this research, we integrated calcium peroxide (CPO) embedded polycaprolactone (PCL) microspheres and osteoinductive nanoparticles (Hydroxyapatite/Laponite) into a thermosensitive hydrogel (Pluronic F127), thereby formulating an injectable oxygen-releasing osteogenic thermosensitive hydrogel. Notably, the oxygen-releasing microspheres (ORMs) within the composite hydrogel provide stable oxygen release for up to 21 days, ensuring the survival, migration, and bioactivity of both mesenchymal stem cells and endothelial cells under anoxic conditions. Additionally, the composite hydrogel significantly augments the osteogenic potential of bone marrow mesenchymal stem cells by providing a biomimetic microenvironment with the incorporation of nano-hydroxyapatite/laponite. Ultimately, the injectable composite hydrogel successfully stimulated bone regeneration within a cranial defect in a rat model after 8 weeks, with enhanced vascularization and bone quality. The engineered hydrogel provides a minimally invasive approach to stimulate bone regeneration with a sustained oxygen supply and osteogenic microenvironment provision, underlining its potential for treating critical bone defects.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).