兰德斯曼-拉泽尔条件下非自治演化方程的动态分岔与同调方法

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chunqiu Li, Jintao Wang
{"title":"兰德斯曼-拉泽尔条件下非自治演化方程的动态分岔与同调方法","authors":"Chunqiu Li,&nbsp;Jintao Wang","doi":"10.1016/j.nonrwa.2024.104228","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we study the dynamic bifurcation of nonautonomous evolution equations by using cohomology methods. First, we construct a homotopy equivalence relation between the nonautonomous system and a product flow. Then, we slightly extend some continuation theorems on bifurcations for autonomous equations, and prove some new cohomology consequences on the reduced singular groups. Based on this homotopy equivalence relation and these conclusions, we establish some typical results on the dynamic bifurcation from infinity of the abstract nonautonomous evolution equation. Finally, we consider the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> associated with the Dirichlet boundary condition, where <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> satisfies the appropriate Landesman–Lazer type condition. Some new results on the dynamical behaviors of this equation near resonance of the equation are derived.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic bifurcation of nonautonomous evolution equations under Landesman–Lazer condition with cohomology methods\",\"authors\":\"Chunqiu Li,&nbsp;Jintao Wang\",\"doi\":\"10.1016/j.nonrwa.2024.104228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article we study the dynamic bifurcation of nonautonomous evolution equations by using cohomology methods. First, we construct a homotopy equivalence relation between the nonautonomous system and a product flow. Then, we slightly extend some continuation theorems on bifurcations for autonomous equations, and prove some new cohomology consequences on the reduced singular groups. Based on this homotopy equivalence relation and these conclusions, we establish some typical results on the dynamic bifurcation from infinity of the abstract nonautonomous evolution equation. Finally, we consider the parabolic equation <span><math><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>λ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>+</mo><mi>g</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> associated with the Dirichlet boundary condition, where <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> satisfies the appropriate Landesman–Lazer type condition. Some new results on the dynamical behaviors of this equation near resonance of the equation are derived.</div></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121824001676\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121824001676","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文利用同调方法研究了非自治演化方程的动态分岔。首先,我们构建了非自治系统与乘积流之间的同调等价关系。然后,我们略微扩展了一些关于自主方程分岔的延续定理,并证明了一些关于还原奇异群的新同调后果。基于这种同调等价关系和这些结论,我们建立了抽象非自治演化方程的无穷动态分岔的一些典型结果。最后,我们考虑了与迪里夏特边界条件相关的抛物方程 ut-Δu=λu+f(x,u)+g(x,t) ,其中 f(x,u) 满足适当的 Landesman-Lazer 类型条件。推导出了该方程在共振附近的动力学行为的一些新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic bifurcation of nonautonomous evolution equations under Landesman–Lazer condition with cohomology methods
In this article we study the dynamic bifurcation of nonautonomous evolution equations by using cohomology methods. First, we construct a homotopy equivalence relation between the nonautonomous system and a product flow. Then, we slightly extend some continuation theorems on bifurcations for autonomous equations, and prove some new cohomology consequences on the reduced singular groups. Based on this homotopy equivalence relation and these conclusions, we establish some typical results on the dynamic bifurcation from infinity of the abstract nonautonomous evolution equation. Finally, we consider the parabolic equation utΔu=λu+f(x,u)+g(x,t) associated with the Dirichlet boundary condition, where f(x,u) satisfies the appropriate Landesman–Lazer type condition. Some new results on the dynamical behaviors of this equation near resonance of the equation are derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信