{"title":"磷能减轻微塑料污染对小麦和玉米的不利影响:对生长、光合作用和抗氧化防御的影响","authors":"Zixin Geng , Bingnan Zhao , Yusui Duan , Wansheng Xia , Jianzhou Chu , Xiaoqin Yao","doi":"10.1016/j.envexpbot.2024.105993","DOIUrl":null,"url":null,"abstract":"<div><div>Microplastics (MP) pollution in agricultural soils has become an important environmental problem. Phosphorus (P) is a key nutrient for plant growth. P fertilizers are mainly applied to agricultural fields to achieve the high production expected by farmers. The experiment included two MP levels (0, 1 % w/w) and two P levels (0 mg kg<sup>−1</sup>, 200 mg kg<sup>−1</sup>) in order to know whether MP effects on wheat and maize are regulated by supplemental P supply. MP decreased plant height, photosynthetic pigment, and chlorophyll fluorescence parameters, while increased ROS and MDA contents. Wheat and maize exhibited distinct strategies in mitigating growth damage caused by MP pollution: wheat primarily increased the AsA contents, while maize predominantly enhanced APX activity. P supply alleviated the MP pollution effect by improving photosynthetic pigments, POD, and PPO activity in wheat and maize. P supply alleviated the MP pollution effect by improving antioxidant enzyme activities in the AsA-GSH cycling in wheat, while increasing non-enzymatic antioxidant contents in the AsA-GSH cycling in maize. The results showed that wheat and maize resisted MP pollution by different mechanisms, and P supply reduced the sensitivity of wheat and maize to MP pollution and its regulatory effect on wheat was better than that on maize.</div></div><div><h3>Synopsis</h3><div>The response of different plants under the same microplastic and phosphorus conditions is limited. We find phosphorus alleviates microplastics pollution on wheat and maize through different regulatory routes.</div></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":"228 ","pages":"Article 105993"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorus mitigates the adverse effects of microplastics pollution on wheat and maize: Impacts on growth, photosynthesis, and antioxidant defense\",\"authors\":\"Zixin Geng , Bingnan Zhao , Yusui Duan , Wansheng Xia , Jianzhou Chu , Xiaoqin Yao\",\"doi\":\"10.1016/j.envexpbot.2024.105993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microplastics (MP) pollution in agricultural soils has become an important environmental problem. Phosphorus (P) is a key nutrient for plant growth. P fertilizers are mainly applied to agricultural fields to achieve the high production expected by farmers. The experiment included two MP levels (0, 1 % w/w) and two P levels (0 mg kg<sup>−1</sup>, 200 mg kg<sup>−1</sup>) in order to know whether MP effects on wheat and maize are regulated by supplemental P supply. MP decreased plant height, photosynthetic pigment, and chlorophyll fluorescence parameters, while increased ROS and MDA contents. Wheat and maize exhibited distinct strategies in mitigating growth damage caused by MP pollution: wheat primarily increased the AsA contents, while maize predominantly enhanced APX activity. P supply alleviated the MP pollution effect by improving photosynthetic pigments, POD, and PPO activity in wheat and maize. P supply alleviated the MP pollution effect by improving antioxidant enzyme activities in the AsA-GSH cycling in wheat, while increasing non-enzymatic antioxidant contents in the AsA-GSH cycling in maize. The results showed that wheat and maize resisted MP pollution by different mechanisms, and P supply reduced the sensitivity of wheat and maize to MP pollution and its regulatory effect on wheat was better than that on maize.</div></div><div><h3>Synopsis</h3><div>The response of different plants under the same microplastic and phosphorus conditions is limited. We find phosphorus alleviates microplastics pollution on wheat and maize through different regulatory routes.</div></div>\",\"PeriodicalId\":11758,\"journal\":{\"name\":\"Environmental and Experimental Botany\",\"volume\":\"228 \",\"pages\":\"Article 105993\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental and Experimental Botany\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0098847224003514\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003514","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Phosphorus mitigates the adverse effects of microplastics pollution on wheat and maize: Impacts on growth, photosynthesis, and antioxidant defense
Microplastics (MP) pollution in agricultural soils has become an important environmental problem. Phosphorus (P) is a key nutrient for plant growth. P fertilizers are mainly applied to agricultural fields to achieve the high production expected by farmers. The experiment included two MP levels (0, 1 % w/w) and two P levels (0 mg kg−1, 200 mg kg−1) in order to know whether MP effects on wheat and maize are regulated by supplemental P supply. MP decreased plant height, photosynthetic pigment, and chlorophyll fluorescence parameters, while increased ROS and MDA contents. Wheat and maize exhibited distinct strategies in mitigating growth damage caused by MP pollution: wheat primarily increased the AsA contents, while maize predominantly enhanced APX activity. P supply alleviated the MP pollution effect by improving photosynthetic pigments, POD, and PPO activity in wheat and maize. P supply alleviated the MP pollution effect by improving antioxidant enzyme activities in the AsA-GSH cycling in wheat, while increasing non-enzymatic antioxidant contents in the AsA-GSH cycling in maize. The results showed that wheat and maize resisted MP pollution by different mechanisms, and P supply reduced the sensitivity of wheat and maize to MP pollution and its regulatory effect on wheat was better than that on maize.
Synopsis
The response of different plants under the same microplastic and phosphorus conditions is limited. We find phosphorus alleviates microplastics pollution on wheat and maize through different regulatory routes.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.