Jan Mertes , Christian Schellenberger , Li Yi , Marius Schmitz , Moritz Glatt , Matthias Klar , Bahram Ravani , Hans D. Schotten , Jan C. Aurich
{"title":"基于机床数字孪生系统的 5G 性能实验评估","authors":"Jan Mertes , Christian Schellenberger , Li Yi , Marius Schmitz , Moritz Glatt , Matthias Klar , Bahram Ravani , Hans D. Schotten , Jan C. Aurich","doi":"10.1016/j.cirpj.2024.09.012","DOIUrl":null,"url":null,"abstract":"<div><div>The 5G mobile communication standard can potentially meet the networking requirements for different industrial use cases simultaneously due to the promised low latency, high bandwidth, and high device density while providing a high quality of service. These capabilities enable the realization of digital twins (DTs) that are based on edge computing for time- and safety-critical wireless applications. However, the investigation of the applicability of 5G for DTs in real-world manufacturing scenarios is still lacking. In this work, we have evaluated a DT based on edge-computing and 5G mobile communication using extensive experiments. We have focused on the communication technology and requirements needed to enable functionalities on edge devices. The key contribution of this paper is a comprehensive experimental study on 5G performance characteristics in an existing manufacturing system. Moreover, the influence of 5G on the functionality of the edge-based DT is evaluated and discussed. Full factorial experiments with different network configurations are designed and conducted. The performance of communication characteristics (latency, jitter) is evaluated as well as the impact on the continuity between real and digital processes. The results are also compared with the WiFi standard by experimental evaluation. At last, the limits of current 5G networks for manufacturing are discussed.</div></div>","PeriodicalId":56011,"journal":{"name":"CIRP Journal of Manufacturing Science and Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental evaluation of 5G performance based on a digital twin of a machine tool\",\"authors\":\"Jan Mertes , Christian Schellenberger , Li Yi , Marius Schmitz , Moritz Glatt , Matthias Klar , Bahram Ravani , Hans D. Schotten , Jan C. Aurich\",\"doi\":\"10.1016/j.cirpj.2024.09.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The 5G mobile communication standard can potentially meet the networking requirements for different industrial use cases simultaneously due to the promised low latency, high bandwidth, and high device density while providing a high quality of service. These capabilities enable the realization of digital twins (DTs) that are based on edge computing for time- and safety-critical wireless applications. However, the investigation of the applicability of 5G for DTs in real-world manufacturing scenarios is still lacking. In this work, we have evaluated a DT based on edge-computing and 5G mobile communication using extensive experiments. We have focused on the communication technology and requirements needed to enable functionalities on edge devices. The key contribution of this paper is a comprehensive experimental study on 5G performance characteristics in an existing manufacturing system. Moreover, the influence of 5G on the functionality of the edge-based DT is evaluated and discussed. Full factorial experiments with different network configurations are designed and conducted. The performance of communication characteristics (latency, jitter) is evaluated as well as the impact on the continuity between real and digital processes. The results are also compared with the WiFi standard by experimental evaluation. At last, the limits of current 5G networks for manufacturing are discussed.</div></div>\",\"PeriodicalId\":56011,\"journal\":{\"name\":\"CIRP Journal of Manufacturing Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CIRP Journal of Manufacturing Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755581724001512\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRP Journal of Manufacturing Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755581724001512","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Experimental evaluation of 5G performance based on a digital twin of a machine tool
The 5G mobile communication standard can potentially meet the networking requirements for different industrial use cases simultaneously due to the promised low latency, high bandwidth, and high device density while providing a high quality of service. These capabilities enable the realization of digital twins (DTs) that are based on edge computing for time- and safety-critical wireless applications. However, the investigation of the applicability of 5G for DTs in real-world manufacturing scenarios is still lacking. In this work, we have evaluated a DT based on edge-computing and 5G mobile communication using extensive experiments. We have focused on the communication technology and requirements needed to enable functionalities on edge devices. The key contribution of this paper is a comprehensive experimental study on 5G performance characteristics in an existing manufacturing system. Moreover, the influence of 5G on the functionality of the edge-based DT is evaluated and discussed. Full factorial experiments with different network configurations are designed and conducted. The performance of communication characteristics (latency, jitter) is evaluated as well as the impact on the continuity between real and digital processes. The results are also compared with the WiFi standard by experimental evaluation. At last, the limits of current 5G networks for manufacturing are discussed.
期刊介绍:
The CIRP Journal of Manufacturing Science and Technology (CIRP-JMST) publishes fundamental papers on manufacturing processes, production equipment and automation, product design, manufacturing systems and production organisations up to the level of the production networks, including all the related technical, human and economic factors. Preference is given to contributions describing research results whose feasibility has been demonstrated either in a laboratory or in the industrial praxis. Case studies and review papers on specific issues in manufacturing science and technology are equally encouraged.