随机基数中的串行交换

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Sean McGuinness
{"title":"随机基数中的串行交换","authors":"Sean McGuinness","doi":"10.1016/j.dam.2024.09.017","DOIUrl":null,"url":null,"abstract":"<div><div>A well-known <em>symmetric exchange</em> property in matroid theory states that for any two bases <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of a matroid and any subset <span><math><mrow><mi>X</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, there is a subset <span><math><mrow><mi>Y</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for which <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>Y</mi><mo>+</mo><mi>X</mi></mrow></math></span> are bases. There have been a number of proposed strengthenings of this property. As a strengthening of a well-known conjecture of Gabow, Cordovil and Moreira, Kotlar and Ziv (2012) postulated that for any two bases <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and any subset <span><math><mrow><mi>X</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, there is a subset <span><math><mrow><mi>Y</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and orderings <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≺</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≺</mo><mo>⋯</mo><mo>≺</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≺</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≺</mo><mo>⋯</mo><mo>≺</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> of <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span>, respectively, such that for <span><math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mrow><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mo>+</mo><mrow><mo>{</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mrow><mo>{</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mo>+</mo><mrow><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> are bases; that is, there is a subset <span><math><mrow><mi>Y</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for which <span><math><mi>X</mi></math></span> is <em>serially exchangeable</em> with <span><math><mi>Y</mi></math></span>. Progress on this problem has been very limited; to date, this conjecture has only been verified when <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span>. In this paper, we show that for matroids representable over a finite field other than <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the conjecture is true with high probability when <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><mi>X</mi></math></span> are chosen randomly, provided <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≤</mo><mo>ln</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>n</mi></math></span> is the rank of the matroid.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 103-110"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Serial exchanges in random bases\",\"authors\":\"Sean McGuinness\",\"doi\":\"10.1016/j.dam.2024.09.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A well-known <em>symmetric exchange</em> property in matroid theory states that for any two bases <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> of a matroid and any subset <span><math><mrow><mi>X</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, there is a subset <span><math><mrow><mi>Y</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for which <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mi>X</mi><mo>+</mo><mi>Y</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mi>Y</mi><mo>+</mo><mi>X</mi></mrow></math></span> are bases. There have been a number of proposed strengthenings of this property. As a strengthening of a well-known conjecture of Gabow, Cordovil and Moreira, Kotlar and Ziv (2012) postulated that for any two bases <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and any subset <span><math><mrow><mi>X</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, there is a subset <span><math><mrow><mi>Y</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> and orderings <span><math><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≺</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≺</mo><mo>⋯</mo><mo>≺</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> and <span><math><mrow><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≺</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≺</mo><mo>⋯</mo><mo>≺</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></math></span> of <span><math><mi>X</mi></math></span> and <span><math><mi>Y</mi></math></span>, respectively, such that for <span><math><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></mrow></math></span>, <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><mrow><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mo>+</mo><mrow><mo>{</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> and <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><mrow><mo>{</mo><msub><mrow><mi>y</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow><mo>+</mo><mrow><mo>{</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow></math></span> are bases; that is, there is a subset <span><math><mrow><mi>Y</mi><mo>⊆</mo><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> for which <span><math><mi>X</mi></math></span> is <em>serially exchangeable</em> with <span><math><mi>Y</mi></math></span>. Progress on this problem has been very limited; to date, this conjecture has only been verified when <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span>. In this paper, we show that for matroids representable over a finite field other than <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, the conjecture is true with high probability when <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>B</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> and <span><math><mi>X</mi></math></span> are chosen randomly, provided <span><math><mrow><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow><mo>≤</mo><mo>ln</mo><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mi>n</mi></math></span> is the rank of the matroid.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"361 \",\"pages\":\"Pages 103-110\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004074\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004074","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

矩阵理论中有一个著名的对称交换性质,即对于矩阵的任意两个基 B1 和 B2 以及任意子集 X⊆B1,都有一个子集 Y⊆B2,其中 B1-X+Y 和 B2-Y+X 是基。对这一性质有许多强化建议。作为对 Gabow、Cordovil 和 Moreira 一个著名猜想的加强,Kotlar 和 Ziv(2012 年)假设,对于任意两个基 B1 和 B2 以及任意子集 X⊆B1、有一个子集 Y⊆B2,以及 X 和 Y 的排序 x1≺x2≺⋯≺xk 和 y1≺y2≺⋯≺yk,使得对于 i=1,...,k,B1-{x1,...,xi}+{y1,...,yi}和 B2-{y1,...,yi}+{x1,...,xi}是基;也就是说,存在一个子集 Y⊆B2,对于这个子集,X 与 Y 是可以序列交换的。这个问题的研究进展非常有限;迄今为止,只有当 |X|≤2 时,这个猜想才被验证。在本文中,我们证明了对于在 Z2 以外的有限域上可表示的矩阵,只要 |X|≤ln(n),其中 n 是矩阵的秩,那么在随机选择 B1、B2 和 X 时,猜想很有可能是真的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Serial exchanges in random bases
A well-known symmetric exchange property in matroid theory states that for any two bases B1 and B2 of a matroid and any subset XB1, there is a subset YB2 for which B1X+Y and B2Y+X are bases. There have been a number of proposed strengthenings of this property. As a strengthening of a well-known conjecture of Gabow, Cordovil and Moreira, Kotlar and Ziv (2012) postulated that for any two bases B1 and B2 and any subset XB1, there is a subset YB2 and orderings x1x2xk and y1y2yk of X and Y, respectively, such that for i=1,,k, B1{x1,,xi}+{y1,,yi} and B2{y1,,yi}+{x1,,xi} are bases; that is, there is a subset YB2 for which X is serially exchangeable with Y. Progress on this problem has been very limited; to date, this conjecture has only been verified when |X|2. In this paper, we show that for matroids representable over a finite field other than Z2, the conjecture is true with high probability when B1, B2 and X are chosen randomly, provided |X|ln(n), where n is the rank of the matroid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信