W(Dn)不变雅可比形式的模微分方程

IF 1.6 3区 数学 Q1 MATHEMATICS
Dmitrii Adler , Valery Gritsenko
{"title":"W(Dn)不变雅可比形式的模微分方程","authors":"Dmitrii Adler ,&nbsp;Valery Gritsenko","doi":"10.1016/j.geomphys.2024.105339","DOIUrl":null,"url":null,"abstract":"<div><div>We study rings of weak Jacobi forms invariant with respect to the action of the Weyl group for the root systems <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and provide an explicit construction of generators of such rings by using modular differential operators. The construction of generators in the form of a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-tower (<span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>) gives a simple proof that these graded rings of Jacobi forms are polynomial. We study in detail modular differential equations (MDEs), which are satisfied by generators of index 1. Interesting anomalies are noticed for the lattices <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span>. In particular, some generators for these lattices satisfy the Kaneko–Zagier type MDEs of order 2 or MDEs of order 1 similar to the differential equation of the elliptic genus of three-dimensional Calabi–Yau manifolds.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modular differential equations of W(Dn)-invariant Jacobi forms\",\"authors\":\"Dmitrii Adler ,&nbsp;Valery Gritsenko\",\"doi\":\"10.1016/j.geomphys.2024.105339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study rings of weak Jacobi forms invariant with respect to the action of the Weyl group for the root systems <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and provide an explicit construction of generators of such rings by using modular differential operators. The construction of generators in the form of a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-tower (<span><math><mi>n</mi><mo>≥</mo><mn>2</mn></math></span>) gives a simple proof that these graded rings of Jacobi forms are polynomial. We study in detail modular differential equations (MDEs), which are satisfied by generators of index 1. Interesting anomalies are noticed for the lattices <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>8</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>12</mn></mrow></msub></math></span>. In particular, some generators for these lattices satisfy the Kaneko–Zagier type MDEs of order 2 or MDEs of order 1 similar to the differential equation of the elliptic genus of three-dimensional Calabi–Yau manifolds.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024002407\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002407","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了根系统 Cn 和 Dn 在韦尔群作用方面不变的弱雅各比形式环,并通过使用模微分算子明确构造了此类环的生成器。以 Dn 塔(n≥2)形式构造的生成器简单地证明了这些雅可比形式的分级环是多项式的。我们详细研究了指数为 1 的生成器所满足的模块微分方程(MDE)。我们注意到网格 D4、D8 和 D12 的有趣反常现象。特别是,这些网格的一些生成器满足阶数为 2 的 Kaneko-Zagier 型 MDE 或类似于三维 Calabi-Yau 流形的椭圆属微分方程的阶数为 1 的 MDE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modular differential equations of W(Dn)-invariant Jacobi forms
We study rings of weak Jacobi forms invariant with respect to the action of the Weyl group for the root systems Cn and Dn, and provide an explicit construction of generators of such rings by using modular differential operators. The construction of generators in the form of a Dn-tower (n2) gives a simple proof that these graded rings of Jacobi forms are polynomial. We study in detail modular differential equations (MDEs), which are satisfied by generators of index 1. Interesting anomalies are noticed for the lattices D4, D8 and D12. In particular, some generators for these lattices satisfy the Kaneko–Zagier type MDEs of order 2 or MDEs of order 1 similar to the differential equation of the elliptic genus of three-dimensional Calabi–Yau manifolds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信