{"title":"半监督图像标题生成对抗网络","authors":"Xu Liang, Chen Li, Lihua Tian","doi":"10.1016/j.cviu.2024.104199","DOIUrl":null,"url":null,"abstract":"<div><div>Traditional supervised image captioning methods usually rely on a large number of images and paired captions for training. However, the creation of such datasets necessitates considerable temporal and human resources. Therefore, we propose a new semi-supervised image captioning algorithm to solve this problem. The proposed method uses a generative adversarial network to generate images that match captions, and uses these generated images and captions as new training data. This avoids the error accumulation problem when generating pseudo captions with autoregressive method and the network can directly perform backpropagation. At the same time, in order to ensure the correlation between the generated images and captions, we introduced the CLIP model for constraints. The CLIP model has been pre-trained on a large amount of image–text data, so it shows excellent performance in semantic alignment of images and text. To verify the effectiveness of our method, we validate on MSCOCO offline “Karpathy” test split. Experiment results show that our method can significantly improve the performance of the model when using 1% paired data, with the CIDEr score increasing from 69.5% to 77.7%. This shows that our method can effectively utilize unlabeled data for image caption tasks.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104199"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative adversarial network for semi-supervised image captioning\",\"authors\":\"Xu Liang, Chen Li, Lihua Tian\",\"doi\":\"10.1016/j.cviu.2024.104199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Traditional supervised image captioning methods usually rely on a large number of images and paired captions for training. However, the creation of such datasets necessitates considerable temporal and human resources. Therefore, we propose a new semi-supervised image captioning algorithm to solve this problem. The proposed method uses a generative adversarial network to generate images that match captions, and uses these generated images and captions as new training data. This avoids the error accumulation problem when generating pseudo captions with autoregressive method and the network can directly perform backpropagation. At the same time, in order to ensure the correlation between the generated images and captions, we introduced the CLIP model for constraints. The CLIP model has been pre-trained on a large amount of image–text data, so it shows excellent performance in semantic alignment of images and text. To verify the effectiveness of our method, we validate on MSCOCO offline “Karpathy” test split. Experiment results show that our method can significantly improve the performance of the model when using 1% paired data, with the CIDEr score increasing from 69.5% to 77.7%. This shows that our method can effectively utilize unlabeled data for image caption tasks.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"249 \",\"pages\":\"Article 104199\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314224002807\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002807","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Generative adversarial network for semi-supervised image captioning
Traditional supervised image captioning methods usually rely on a large number of images and paired captions for training. However, the creation of such datasets necessitates considerable temporal and human resources. Therefore, we propose a new semi-supervised image captioning algorithm to solve this problem. The proposed method uses a generative adversarial network to generate images that match captions, and uses these generated images and captions as new training data. This avoids the error accumulation problem when generating pseudo captions with autoregressive method and the network can directly perform backpropagation. At the same time, in order to ensure the correlation between the generated images and captions, we introduced the CLIP model for constraints. The CLIP model has been pre-trained on a large amount of image–text data, so it shows excellent performance in semantic alignment of images and text. To verify the effectiveness of our method, we validate on MSCOCO offline “Karpathy” test split. Experiment results show that our method can significantly improve the performance of the model when using 1% paired data, with the CIDEr score increasing from 69.5% to 77.7%. This shows that our method can effectively utilize unlabeled data for image caption tasks.
期刊介绍:
The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views.
Research Areas Include:
• Theory
• Early vision
• Data structures and representations
• Shape
• Range
• Motion
• Matching and recognition
• Architecture and languages
• Vision systems