普吕克坐标和罗森菲尔德平面

IF 1.6 3区 数学 Q1 MATHEMATICS
Jian Qiu
{"title":"普吕克坐标和罗森菲尔德平面","authors":"Jian Qiu","doi":"10.1016/j.geomphys.2024.105331","DOIUrl":null,"url":null,"abstract":"<div><div>The exceptional compact hermitian symmetric space EIII is the quotient <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>/</mo><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mo>(</mo><mn>10</mn><mo>)</mo><msub><mrow><mo>×</mo></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. We introduce the Plücker coordinates which give an embedding of EIII into <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>26</mn></mrow></msup></math></span> as a projective subvariety. The subvariety is cut out by 27 Plücker relations. We show that, using Clifford algebra, one can solve this over-determined system of relations, giving local coordinate charts to the space.</div><div>Our motivation is to understand EIII as the complex projective octonion plane <span><math><mo>(</mo><mi>C</mi><mo>⊗</mo><mi>O</mi><mo>)</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, whose construction is somewhat scattered across the literature. We will see that the EIII has an atlas whose transition functions have clear octonion interpretations, apart from those covering a sub-variety <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> of dimension 10. This subvariety is itself a hermitian symmetric space known as DIII, with no apparent octonion interpretation. We give detailed analysis of the geometry in the neighbourhood of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>.</div><div>We further decompose <span><math><mi>X</mi><mo>=</mo><mrow><mi>EIII</mi></mrow></math></span> into <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-orbits: <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>Y</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, where <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∼</mo><msub><mrow><mo>(</mo><mi>O</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span> is an open <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-orbit and is the complexification of <span><math><mi>O</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, whereas <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> has co-dimension 1, thus EIII could be more appropriately denoted as <span><math><mover><mrow><msub><mrow><mo>(</mo><mi>O</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>C</mi></mrow></msub></mrow><mo>‾</mo></mover></math></span>. This decomposition appears in the classification of equivariant completion of homogeneous algebraic varieties by Ahiezer <span><span>[2]</span></span>.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plücker coordinates and the Rosenfeld planes\",\"authors\":\"Jian Qiu\",\"doi\":\"10.1016/j.geomphys.2024.105331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The exceptional compact hermitian symmetric space EIII is the quotient <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>6</mn></mrow></msub><mo>/</mo><mi>S</mi><mi>p</mi><mi>i</mi><mi>n</mi><mo>(</mo><mn>10</mn><mo>)</mo><msub><mrow><mo>×</mo></mrow><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mi>U</mi><mo>(</mo><mn>1</mn><mo>)</mo></math></span>. We introduce the Plücker coordinates which give an embedding of EIII into <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>26</mn></mrow></msup></math></span> as a projective subvariety. The subvariety is cut out by 27 Plücker relations. We show that, using Clifford algebra, one can solve this over-determined system of relations, giving local coordinate charts to the space.</div><div>Our motivation is to understand EIII as the complex projective octonion plane <span><math><mo>(</mo><mi>C</mi><mo>⊗</mo><mi>O</mi><mo>)</mo><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, whose construction is somewhat scattered across the literature. We will see that the EIII has an atlas whose transition functions have clear octonion interpretations, apart from those covering a sub-variety <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> of dimension 10. This subvariety is itself a hermitian symmetric space known as DIII, with no apparent octonion interpretation. We give detailed analysis of the geometry in the neighbourhood of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>.</div><div>We further decompose <span><math><mi>X</mi><mo>=</mo><mrow><mi>EIII</mi></mrow></math></span> into <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-orbits: <span><math><mi>X</mi><mo>=</mo><msub><mrow><mi>Y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>Y</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span>, where <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∼</mo><msub><mrow><mo>(</mo><mi>O</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>C</mi></mrow></msub></math></span> is an open <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-orbit and is the complexification of <span><math><mi>O</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>, whereas <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mo>∞</mo></mrow></msub></math></span> has co-dimension 1, thus EIII could be more appropriately denoted as <span><math><mover><mrow><msub><mrow><mo>(</mo><mi>O</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mrow><mi>C</mi></mrow></msub></mrow><mo>‾</mo></mover></math></span>. This decomposition appears in the classification of equivariant completion of homogeneous algebraic varieties by Ahiezer <span><span>[2]</span></span>.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044024002328\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044024002328","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

例外紧凑全对称空间 EIII 是 E6/Spin(10)×Z4U(1) 的商。我们引入了普吕克坐标,它给出了 EIII 嵌入 CP26 的投影子域。这个子域由 27 个普吕克关系切出。我们的动机是把 EIII 理解为复射八音平面 (C⊗O)P2,它的构造在文献中有些分散。我们将看到,EIII 有一个图集,除了那些覆盖维数为 10 的子维 X∞ 的函数之外,其过渡函数具有明确的八音子解释。这个子维本身是一个称为 DIII 的赫米蒂对称空间,没有明显的八次元解释。我们进一步将 X=EIII 分解为 F4 轨道:我们进一步将 X=EIII 分解为 F4 轨道:X=Y0∪Y∞,其中 Y0∼(OP2)C 是一个开放的 F4 轨道,是 OP2 的复数化,而 Y∞ 的共维为 1,因此 EIII 可以更恰当地表示为 (OP2)C‾。这种分解出现在阿希泽 [2] 的均相代数品种等变完备分类中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Plücker coordinates and the Rosenfeld planes
The exceptional compact hermitian symmetric space EIII is the quotient E6/Spin(10)×Z4U(1). We introduce the Plücker coordinates which give an embedding of EIII into CP26 as a projective subvariety. The subvariety is cut out by 27 Plücker relations. We show that, using Clifford algebra, one can solve this over-determined system of relations, giving local coordinate charts to the space.
Our motivation is to understand EIII as the complex projective octonion plane (CO)P2, whose construction is somewhat scattered across the literature. We will see that the EIII has an atlas whose transition functions have clear octonion interpretations, apart from those covering a sub-variety X of dimension 10. This subvariety is itself a hermitian symmetric space known as DIII, with no apparent octonion interpretation. We give detailed analysis of the geometry in the neighbourhood of X.
We further decompose X=EIII into F4-orbits: X=Y0Y, where Y0(OP2)C is an open F4-orbit and is the complexification of OP2, whereas Y has co-dimension 1, thus EIII could be more appropriately denoted as (OP2)C. This decomposition appears in the classification of equivariant completion of homogeneous algebraic varieties by Ahiezer [2].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信