{"title":"磁性介孔纳米复合材料(SBA-16@Fe3O4)上异质化的铜(II)络合物作为硝基化合物还原的高效催化剂","authors":"Yuanlin Shi","doi":"10.1016/j.jscs.2024.101944","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, a novel magnetic heterogeneous copper catalyst was developed by the immobilization of a Cu(II) complex on the surface of magnetic mesoporous nanocomposite (SBA-16@Fe<sub>3</sub>O<sub>4</sub>) through post-synthetic method. The synthesized catalyst was analyzed by various characterization methods including FT-IR, EDS, XRD, Nitrogen physisorption, TEM, TGA, VSM, and ICP-OES. After complete characterization, its catalytic efficiency was evaluated in the hydrogenation of nitroarenes to amines. Taking the nitrobenzene reduction of as an example of a reaction, the reaction conditions were optimized by changing diverse parameters like solvent, temperature, time, amount of catalyst, as well as the type and amount of hydrogen source. The catalyst revealed highly efficient catalytic activity in the hydrogenation of numerous nitroarenes to the corresponding aminoarenes in pure water as the solvent with sodium borohydride as a H<sub>2</sub> source at room temperature. Additionally, the catalyst could be simply recovered from the mixture of reaction via magnetic separation and was able to mediate the reaction for multiple times with undiminished catalytic performance.</div></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 6","pages":"Article 101944"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu(II) complex heterogenized on magnetic mesoporous nanocomposite (SBA-16@Fe3O4) as an efficient catalyst for the reduction of nitro compounds\",\"authors\":\"Yuanlin Shi\",\"doi\":\"10.1016/j.jscs.2024.101944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the present study, a novel magnetic heterogeneous copper catalyst was developed by the immobilization of a Cu(II) complex on the surface of magnetic mesoporous nanocomposite (SBA-16@Fe<sub>3</sub>O<sub>4</sub>) through post-synthetic method. The synthesized catalyst was analyzed by various characterization methods including FT-IR, EDS, XRD, Nitrogen physisorption, TEM, TGA, VSM, and ICP-OES. After complete characterization, its catalytic efficiency was evaluated in the hydrogenation of nitroarenes to amines. Taking the nitrobenzene reduction of as an example of a reaction, the reaction conditions were optimized by changing diverse parameters like solvent, temperature, time, amount of catalyst, as well as the type and amount of hydrogen source. The catalyst revealed highly efficient catalytic activity in the hydrogenation of numerous nitroarenes to the corresponding aminoarenes in pure water as the solvent with sodium borohydride as a H<sub>2</sub> source at room temperature. Additionally, the catalyst could be simply recovered from the mixture of reaction via magnetic separation and was able to mediate the reaction for multiple times with undiminished catalytic performance.</div></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 6\",\"pages\":\"Article 101944\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S131961032400139X\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S131961032400139X","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Cu(II) complex heterogenized on magnetic mesoporous nanocomposite (SBA-16@Fe3O4) as an efficient catalyst for the reduction of nitro compounds
In the present study, a novel magnetic heterogeneous copper catalyst was developed by the immobilization of a Cu(II) complex on the surface of magnetic mesoporous nanocomposite (SBA-16@Fe3O4) through post-synthetic method. The synthesized catalyst was analyzed by various characterization methods including FT-IR, EDS, XRD, Nitrogen physisorption, TEM, TGA, VSM, and ICP-OES. After complete characterization, its catalytic efficiency was evaluated in the hydrogenation of nitroarenes to amines. Taking the nitrobenzene reduction of as an example of a reaction, the reaction conditions were optimized by changing diverse parameters like solvent, temperature, time, amount of catalyst, as well as the type and amount of hydrogen source. The catalyst revealed highly efficient catalytic activity in the hydrogenation of numerous nitroarenes to the corresponding aminoarenes in pure water as the solvent with sodium borohydride as a H2 source at room temperature. Additionally, the catalyst could be simply recovered from the mixture of reaction via magnetic separation and was able to mediate the reaction for multiple times with undiminished catalytic performance.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.