{"title":"通过直接墨水写入法制备的镁稳定 Na-β''-氧化铝固体电解质的性能","authors":"Dongrui Xie , Athanasios Goulas , Bala Vaidhyanathan , Sina Saremi-Yarahmadi","doi":"10.1016/j.oceram.2024.100674","DOIUrl":null,"url":null,"abstract":"<div><div>Mg-stabilised Na-β’’-alumina solid electrolyte (Mg-BASE) for Na-ion batteries was synthesised and fabricated into 3D structures via direct ink writing (DIW), an extrusion-based additive manufacturing process. To produce a water-based ink with optimum viscoelastic properties and supreme printing quality, a comprehensive investigation of ink formulation and printing parameters was conducted. The sintered 3D structures of Mg-BASE, fabricated via direct ink writing, achieved relative density of 98.0 ± 1.1 % with β’’ phase fraction of 99.7 wt% whilst bulk ionic conductivity of 0.081 S⋅cm<sup>−1</sup> at 350 °C was obtained. XRD results indicated that Mg-BASE fabricated via DIW may have different c-axis orientation than conventional dry-pressed pellets, leading to the improved bulk ionic conductivity.</div></div>","PeriodicalId":34140,"journal":{"name":"Open Ceramics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of Mg stabilised Na-β’’-alumina solid electrolytes prepared by direct ink writing\",\"authors\":\"Dongrui Xie , Athanasios Goulas , Bala Vaidhyanathan , Sina Saremi-Yarahmadi\",\"doi\":\"10.1016/j.oceram.2024.100674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mg-stabilised Na-β’’-alumina solid electrolyte (Mg-BASE) for Na-ion batteries was synthesised and fabricated into 3D structures via direct ink writing (DIW), an extrusion-based additive manufacturing process. To produce a water-based ink with optimum viscoelastic properties and supreme printing quality, a comprehensive investigation of ink formulation and printing parameters was conducted. The sintered 3D structures of Mg-BASE, fabricated via direct ink writing, achieved relative density of 98.0 ± 1.1 % with β’’ phase fraction of 99.7 wt% whilst bulk ionic conductivity of 0.081 S⋅cm<sup>−1</sup> at 350 °C was obtained. XRD results indicated that Mg-BASE fabricated via DIW may have different c-axis orientation than conventional dry-pressed pellets, leading to the improved bulk ionic conductivity.</div></div>\",\"PeriodicalId\":34140,\"journal\":{\"name\":\"Open Ceramics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Ceramics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266653952400138X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266653952400138X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Performance of Mg stabilised Na-β’’-alumina solid electrolytes prepared by direct ink writing
Mg-stabilised Na-β’’-alumina solid electrolyte (Mg-BASE) for Na-ion batteries was synthesised and fabricated into 3D structures via direct ink writing (DIW), an extrusion-based additive manufacturing process. To produce a water-based ink with optimum viscoelastic properties and supreme printing quality, a comprehensive investigation of ink formulation and printing parameters was conducted. The sintered 3D structures of Mg-BASE, fabricated via direct ink writing, achieved relative density of 98.0 ± 1.1 % with β’’ phase fraction of 99.7 wt% whilst bulk ionic conductivity of 0.081 S⋅cm−1 at 350 °C was obtained. XRD results indicated that Mg-BASE fabricated via DIW may have different c-axis orientation than conventional dry-pressed pellets, leading to the improved bulk ionic conductivity.