在边界元法中加快矩阵组装的新策略

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Lucas Silveira Campos, Carlos Friedrich Loeffler
{"title":"在边界元法中加快矩阵组装的新策略","authors":"Lucas Silveira Campos,&nbsp;Carlos Friedrich Loeffler","doi":"10.1016/j.camwa.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a new modelling approach that leads to a more efficient process for constructing the matrix system arising from the discretization of integral equations by the boundary element method. This method uses the matrix structure employed in the direct interpolation technique, yielding computational efficiency while maintaining precise outcomes and ensuring convergence as the mesh is refined. To demonstrate the effectiveness of this novel numerical technique, it is applied to solve two-dimensional problems governed by the Laplace equation.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new strategy for a faster matrix assembly in the boundary element method\",\"authors\":\"Lucas Silveira Campos,&nbsp;Carlos Friedrich Loeffler\",\"doi\":\"10.1016/j.camwa.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a new modelling approach that leads to a more efficient process for constructing the matrix system arising from the discretization of integral equations by the boundary element method. This method uses the matrix structure employed in the direct interpolation technique, yielding computational efficiency while maintaining precise outcomes and ensuring convergence as the mesh is refined. To demonstrate the effectiveness of this novel numerical technique, it is applied to solve two-dimensional problems governed by the Laplace equation.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004449\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004449","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种新的建模方法,它能更高效地构建由边界元法离散积分方程产生的矩阵系统。该方法采用了直接插值技术中使用的矩阵结构,在保持精确结果的同时提高了计算效率,并确保了网格细化过程中的收敛性。为了证明这种新型数值技术的有效性,我们将其用于解决由拉普拉斯方程控制的二维问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new strategy for a faster matrix assembly in the boundary element method
This study introduces a new modelling approach that leads to a more efficient process for constructing the matrix system arising from the discretization of integral equations by the boundary element method. This method uses the matrix structure employed in the direct interpolation technique, yielding computational efficiency while maintaining precise outcomes and ensuring convergence as the mesh is refined. To demonstrate the effectiveness of this novel numerical technique, it is applied to solve two-dimensional problems governed by the Laplace equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信