多边形网格上孔隙-弹性力学模型的混合虚拟元素方法

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Yanli Chen , Xin Liu , Wenhui Zhang , Yufeng Nie
{"title":"多边形网格上孔隙-弹性力学模型的混合虚拟元素方法","authors":"Yanli Chen ,&nbsp;Xin Liu ,&nbsp;Wenhui Zhang ,&nbsp;Yufeng Nie","doi":"10.1016/j.camwa.2024.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>This work introduces and analyzes the mixed virtual element method on polygonal meshes for the numerical discretization of poro-elastodynamics models. For spatial discretization, we employ the mixed virtual element method on polygonal meshes, coupled with Newmark-<em>β</em> integration schemes for time discretization. We present a stability analysis for both the continuous and semi-discrete problems and derive error estimates for the energy norm in the semi-discrete case. Numerical experiments are conducted to verify the theoretical analysis, and the results on Voronoi meshes demonstrate that the algorithm effectively handles various dynamic viscosities.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"174 ","pages":"Pages 431-448"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed virtual element methods for the poro-elastodynamics model on polygonal grids\",\"authors\":\"Yanli Chen ,&nbsp;Xin Liu ,&nbsp;Wenhui Zhang ,&nbsp;Yufeng Nie\",\"doi\":\"10.1016/j.camwa.2024.09.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work introduces and analyzes the mixed virtual element method on polygonal meshes for the numerical discretization of poro-elastodynamics models. For spatial discretization, we employ the mixed virtual element method on polygonal meshes, coupled with Newmark-<em>β</em> integration schemes for time discretization. We present a stability analysis for both the continuous and semi-discrete problems and derive error estimates for the energy norm in the semi-discrete case. Numerical experiments are conducted to verify the theoretical analysis, and the results on Voronoi meshes demonstrate that the algorithm effectively handles various dynamic viscosities.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"174 \",\"pages\":\"Pages 431-448\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004334\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004334","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍并分析了多边形网格上的混合虚拟元素法,用于孔-弹性力学模型的数值离散化。在空间离散化方面,我们采用多边形网格上的混合虚拟元素法,并结合 Newmark-β 积分方案进行时间离散化。我们对连续和半离散问题进行了稳定性分析,并得出了半离散情况下能量规范的误差估计值。我们进行了数值实验来验证理论分析,在 Voronoi 网格上的结果表明,该算法能有效处理各种动态粘度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed virtual element methods for the poro-elastodynamics model on polygonal grids
This work introduces and analyzes the mixed virtual element method on polygonal meshes for the numerical discretization of poro-elastodynamics models. For spatial discretization, we employ the mixed virtual element method on polygonal meshes, coupled with Newmark-β integration schemes for time discretization. We present a stability analysis for both the continuous and semi-discrete problems and derive error estimates for the energy norm in the semi-discrete case. Numerical experiments are conducted to verify the theoretical analysis, and the results on Voronoi meshes demonstrate that the algorithm effectively handles various dynamic viscosities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信