{"title":"分裂星型网络的两两相接-循环-覆盖泛周期性","authors":"Hao Li , Liting Chen , Mei Lu","doi":"10.1016/j.amc.2024.129085","DOIUrl":null,"url":null,"abstract":"<div><div>Pancyclicity is a stronger property than Hamiltonicity. In 1973, Bondy stated his celebrated meta-conjecture. Since then, problems related to pancyclicity have attracted a lot of attentions and interests of researchers. A connected graph <em>G</em> is two-disjoint-cycle-cover <span><math><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></math></span>-pancyclic or briefly 2-DCC <span><math><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></math></span>-pancyclic if for any positive integer <em>t</em> with <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></math></span>, there are two vertex-disjoint cycles <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in <em>G</em> satisfying <span><math><mo>|</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>|</mo><mo>=</mo><mi>t</mi></math></span> and <span><math><mo>|</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>|</mo><mo>=</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mi>t</mi></math></span>. In this paper, it is proved that the <em>n</em>-dimensional split-star network <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is 2-DCC <span><math><mo>[</mo><mn>3</mn><mo>,</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>!</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>]</mo></math></span>-pancyclic when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-disjoint-cycle-cover pancyclicity of split-star networks\",\"authors\":\"Hao Li , Liting Chen , Mei Lu\",\"doi\":\"10.1016/j.amc.2024.129085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pancyclicity is a stronger property than Hamiltonicity. In 1973, Bondy stated his celebrated meta-conjecture. Since then, problems related to pancyclicity have attracted a lot of attentions and interests of researchers. A connected graph <em>G</em> is two-disjoint-cycle-cover <span><math><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></math></span>-pancyclic or briefly 2-DCC <span><math><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></math></span>-pancyclic if for any positive integer <em>t</em> with <span><math><mi>t</mi><mo>∈</mo><mo>[</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></math></span>, there are two vertex-disjoint cycles <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> in <em>G</em> satisfying <span><math><mo>|</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>|</mo><mo>=</mo><mi>t</mi></math></span> and <span><math><mo>|</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo><mo>|</mo><mo>=</mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>−</mo><mi>t</mi></math></span>. In this paper, it is proved that the <em>n</em>-dimensional split-star network <span><math><msubsup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></math></span> is 2-DCC <span><math><mo>[</mo><mn>3</mn><mo>,</mo><mo>⌊</mo><mfrac><mrow><mi>n</mi><mo>!</mo></mrow><mrow><mn>2</mn></mrow></mfrac><mo>⌋</mo><mo>]</mo></math></span>-pancyclic when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005460\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005460","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Two-disjoint-cycle-cover pancyclicity of split-star networks
Pancyclicity is a stronger property than Hamiltonicity. In 1973, Bondy stated his celebrated meta-conjecture. Since then, problems related to pancyclicity have attracted a lot of attentions and interests of researchers. A connected graph G is two-disjoint-cycle-cover -pancyclic or briefly 2-DCC -pancyclic if for any positive integer t with , there are two vertex-disjoint cycles and in G satisfying and . In this paper, it is proved that the n-dimensional split-star network is 2-DCC -pancyclic when .