基于 FFT 的 DDSIIM 求解器,用于求解任意域上系数不连续的椭圆界面问题及其误差分析

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jianjun Chen , Yuxuan Wang , Weiyi Wang , Zhijun Tan
{"title":"基于 FFT 的 DDSIIM 求解器,用于求解任意域上系数不连续的椭圆界面问题及其误差分析","authors":"Jianjun Chen ,&nbsp;Yuxuan Wang ,&nbsp;Weiyi Wang ,&nbsp;Zhijun Tan","doi":"10.1016/j.amc.2024.129086","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a fast FFT-based domain decomposition simplified immersed interface method (DDSIIM) solver for addressing elliptic interface problems characterized by fully discontinuous coefficients on arbitrary domains. The method involves decomposing the original elliptic interface problem along the interfaces, resulting in sub-problems defined on subdomains embedded within larger regular domains. By utilizing a variety of novel solution extension schemes and augmented variable strategies, each sub-problem is transformed into a straightforward elliptic interface problem with constant coefficients on a regular domain, interconnected through augmented equations. The interconnected sub-interface problems are initially resolved by solving for the augmented variables using GMRES, which does not depend on mesh size, followed by the application of the fast FFT-based SIIM in each GMRES iteration. Rigorous error estimates are derived to ensure global second-order accuracy in both the discrete <span><math><msup><mrow><mtext>L</mtext></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and the maximum norm. A large number of numerical examples are presented to demonstrate the effectiveness and accuracy of the proposed DDSIIM solver.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A FFT-based DDSIIM solver for elliptic interface problems with discontinuous coefficients on arbitrary domains and its error analysis\",\"authors\":\"Jianjun Chen ,&nbsp;Yuxuan Wang ,&nbsp;Weiyi Wang ,&nbsp;Zhijun Tan\",\"doi\":\"10.1016/j.amc.2024.129086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we propose a fast FFT-based domain decomposition simplified immersed interface method (DDSIIM) solver for addressing elliptic interface problems characterized by fully discontinuous coefficients on arbitrary domains. The method involves decomposing the original elliptic interface problem along the interfaces, resulting in sub-problems defined on subdomains embedded within larger regular domains. By utilizing a variety of novel solution extension schemes and augmented variable strategies, each sub-problem is transformed into a straightforward elliptic interface problem with constant coefficients on a regular domain, interconnected through augmented equations. The interconnected sub-interface problems are initially resolved by solving for the augmented variables using GMRES, which does not depend on mesh size, followed by the application of the fast FFT-based SIIM in each GMRES iteration. Rigorous error estimates are derived to ensure global second-order accuracy in both the discrete <span><math><msup><mrow><mtext>L</mtext></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm and the maximum norm. A large number of numerical examples are presented to demonstrate the effectiveness and accuracy of the proposed DDSIIM solver.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005472\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005472","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了一种基于 FFT 的快速域分解简化沉浸界面法 (DDSIIM) 求解器,用于解决任意域上以完全不连续系数为特征的椭圆界面问题。该方法涉及沿界面分解原始椭圆界面问题,从而在嵌入较大规则域的子域上定义子问题。通过利用各种新颖的求解扩展方案和增强变量策略,每个子问题都被转化为常规域上具有常数系数的直接椭圆界面问题,并通过增强方程相互连接。相互连接的子界面问题最初是通过使用 GMRES(不依赖于网格大小)求解增强变量来解决的,然后在每次 GMRES 迭代中应用基于 FFT 的快速 SIIM。我们得出了严格的误差估计值,以确保离散 L2 准则和最大准则的全局二阶精度。本文列举了大量数值示例,以证明所提出的 DDSIIM 求解器的有效性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A FFT-based DDSIIM solver for elliptic interface problems with discontinuous coefficients on arbitrary domains and its error analysis
In this study, we propose a fast FFT-based domain decomposition simplified immersed interface method (DDSIIM) solver for addressing elliptic interface problems characterized by fully discontinuous coefficients on arbitrary domains. The method involves decomposing the original elliptic interface problem along the interfaces, resulting in sub-problems defined on subdomains embedded within larger regular domains. By utilizing a variety of novel solution extension schemes and augmented variable strategies, each sub-problem is transformed into a straightforward elliptic interface problem with constant coefficients on a regular domain, interconnected through augmented equations. The interconnected sub-interface problems are initially resolved by solving for the augmented variables using GMRES, which does not depend on mesh size, followed by the application of the fast FFT-based SIIM in each GMRES iteration. Rigorous error estimates are derived to ensure global second-order accuracy in both the discrete L2-norm and the maximum norm. A large number of numerical examples are presented to demonstrate the effectiveness and accuracy of the proposed DDSIIM solver.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信