线性阈值模型中的传染概率

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ying Ying Keng , Kiam Heong Kwa
{"title":"线性阈值模型中的传染概率","authors":"Ying Ying Keng ,&nbsp;Kiam Heong Kwa","doi":"10.1016/j.amc.2024.129090","DOIUrl":null,"url":null,"abstract":"<div><div>We study a linear threshold model on a simple undirected connected network <em>G</em> where each non-seed becomes active if and only if the proportion of its active neighbors exceeds its adoption threshold. Each threshold function <span><math><mi>ϕ</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is viewed as a point <span><math><mo>(</mo><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> in the <em>n</em>-cube <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where <span><math><mi>V</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> is the set of nodes in <em>G</em>. We define <em>ϕ</em> as a contagious point of a subset <em>S</em> of nodes if it can induce full contagion from <em>S</em>. Consequently, the volume of the set of contagious points of <em>S</em> in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> represents the probability of full contagion from <em>S</em> when the adoption threshold of each node is independently and uniformly distributed in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, which we term the contagion probability of <em>S</em> and denote by <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>. We derive an explicit formula for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>, showing that <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> is determined by how likely <em>S</em> can produce full contagion exclusively through each spanning tree of the quotient graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> of <em>G</em> in which <em>S</em> is treated as a single node. Besides, we compare <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> with the contagion threshold of <em>S</em>, which is denoted by <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and is the probability of full contagion from <em>S</em> when all nodes share a common adoption threshold <em>q</em> chosen uniformly at random from <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We show that the presence of a cycle in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> is necessary but not sufficient for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> to exceed <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, which indicates that allowing threshold heterogeneity may not always increase the chance of full contagion. Our framework can be extended to study contagion under various threshold settings.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contagion probability in linear threshold model\",\"authors\":\"Ying Ying Keng ,&nbsp;Kiam Heong Kwa\",\"doi\":\"10.1016/j.amc.2024.129090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study a linear threshold model on a simple undirected connected network <em>G</em> where each non-seed becomes active if and only if the proportion of its active neighbors exceeds its adoption threshold. Each threshold function <span><math><mi>ϕ</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is viewed as a point <span><math><mo>(</mo><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> in the <em>n</em>-cube <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where <span><math><mi>V</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> is the set of nodes in <em>G</em>. We define <em>ϕ</em> as a contagious point of a subset <em>S</em> of nodes if it can induce full contagion from <em>S</em>. Consequently, the volume of the set of contagious points of <em>S</em> in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> represents the probability of full contagion from <em>S</em> when the adoption threshold of each node is independently and uniformly distributed in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, which we term the contagion probability of <em>S</em> and denote by <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>. We derive an explicit formula for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>, showing that <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> is determined by how likely <em>S</em> can produce full contagion exclusively through each spanning tree of the quotient graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> of <em>G</em> in which <em>S</em> is treated as a single node. Besides, we compare <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> with the contagion threshold of <em>S</em>, which is denoted by <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and is the probability of full contagion from <em>S</em> when all nodes share a common adoption threshold <em>q</em> chosen uniformly at random from <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We show that the presence of a cycle in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> is necessary but not sufficient for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> to exceed <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, which indicates that allowing threshold heterogeneity may not always increase the chance of full contagion. Our framework can be extended to study contagion under various threshold settings.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005514\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005514","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是一个简单无向连接网络 G 上的线性阈值模型,在该模型中,当且仅当其活跃邻居的比例超过其采用阈值时,每个非种子才会变得活跃。我们将每个阈值函数 ϕ:V→[0,1] 视为 n 立方体 [0,1]n 中的一个点 (j(v1),...,j(vn)),其中 V={v1,...vn} 是 G 中的节点集。因此,S 的传染点集合在 [0,1]n 中的体积表示当每个节点的采用阈值在 [0,1] 中独立均匀分布时,从 S 完全传染的概率,我们称之为 S 的传染概率,用 pc(S) 表示。我们推导出 pc(S)的明确公式,表明 pc(S)取决于 S 通过 G 的商图 GS 的每棵生成树(其中 S 被视为单个节点)产生完全传染的可能性。此外,我们还将 pc(S)与 S 的传染阈值进行了比较,传染阈值用 qc(S)表示,是所有节点共享从 [0,1] 中均匀随机选择的共同采用阈值 q 时,S 产生完全传染的概率。我们的研究表明,GS 中循环的存在是 pc(S) 超过 qc(S) 的必要条件,但不是充分条件,这表明允许阈值异质性并不总能增加完全传染的机会。我们的框架可以扩展到研究各种阈值设置下的传染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contagion probability in linear threshold model
We study a linear threshold model on a simple undirected connected network G where each non-seed becomes active if and only if the proportion of its active neighbors exceeds its adoption threshold. Each threshold function ϕ:V[0,1] is viewed as a point (ϕ(v1),,ϕ(vn)) in the n-cube [0,1]n, where V={v1,,vn} is the set of nodes in G. We define ϕ as a contagious point of a subset S of nodes if it can induce full contagion from S. Consequently, the volume of the set of contagious points of S in [0,1]n represents the probability of full contagion from S when the adoption threshold of each node is independently and uniformly distributed in [0,1], which we term the contagion probability of S and denote by pc(S). We derive an explicit formula for pc(S), showing that pc(S) is determined by how likely S can produce full contagion exclusively through each spanning tree of the quotient graph GS of G in which S is treated as a single node. Besides, we compare pc(S) with the contagion threshold of S, which is denoted by qc(S) and is the probability of full contagion from S when all nodes share a common adoption threshold q chosen uniformly at random from [0,1]. We show that the presence of a cycle in GS is necessary but not sufficient for pc(S) to exceed qc(S), which indicates that allowing threshold heterogeneity may not always increase the chance of full contagion. Our framework can be extended to study contagion under various threshold settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信