{"title":"线性阈值模型中的传染概率","authors":"Ying Ying Keng , Kiam Heong Kwa","doi":"10.1016/j.amc.2024.129090","DOIUrl":null,"url":null,"abstract":"<div><div>We study a linear threshold model on a simple undirected connected network <em>G</em> where each non-seed becomes active if and only if the proportion of its active neighbors exceeds its adoption threshold. Each threshold function <span><math><mi>ϕ</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is viewed as a point <span><math><mo>(</mo><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> in the <em>n</em>-cube <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where <span><math><mi>V</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> is the set of nodes in <em>G</em>. We define <em>ϕ</em> as a contagious point of a subset <em>S</em> of nodes if it can induce full contagion from <em>S</em>. Consequently, the volume of the set of contagious points of <em>S</em> in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> represents the probability of full contagion from <em>S</em> when the adoption threshold of each node is independently and uniformly distributed in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, which we term the contagion probability of <em>S</em> and denote by <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>. We derive an explicit formula for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>, showing that <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> is determined by how likely <em>S</em> can produce full contagion exclusively through each spanning tree of the quotient graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> of <em>G</em> in which <em>S</em> is treated as a single node. Besides, we compare <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> with the contagion threshold of <em>S</em>, which is denoted by <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and is the probability of full contagion from <em>S</em> when all nodes share a common adoption threshold <em>q</em> chosen uniformly at random from <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We show that the presence of a cycle in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> is necessary but not sufficient for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> to exceed <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, which indicates that allowing threshold heterogeneity may not always increase the chance of full contagion. Our framework can be extended to study contagion under various threshold settings.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contagion probability in linear threshold model\",\"authors\":\"Ying Ying Keng , Kiam Heong Kwa\",\"doi\":\"10.1016/j.amc.2024.129090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study a linear threshold model on a simple undirected connected network <em>G</em> where each non-seed becomes active if and only if the proportion of its active neighbors exceeds its adoption threshold. Each threshold function <span><math><mi>ϕ</mi><mo>:</mo><mi>V</mi><mo>→</mo><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span> is viewed as a point <span><math><mo>(</mo><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>ϕ</mi><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo></math></span> in the <em>n</em>-cube <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span>, where <span><math><mi>V</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>}</mo></math></span> is the set of nodes in <em>G</em>. We define <em>ϕ</em> as a contagious point of a subset <em>S</em> of nodes if it can induce full contagion from <em>S</em>. Consequently, the volume of the set of contagious points of <em>S</em> in <span><math><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span> represents the probability of full contagion from <em>S</em> when the adoption threshold of each node is independently and uniformly distributed in <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>, which we term the contagion probability of <em>S</em> and denote by <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>. We derive an explicit formula for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span>, showing that <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> is determined by how likely <em>S</em> can produce full contagion exclusively through each spanning tree of the quotient graph <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> of <em>G</em> in which <em>S</em> is treated as a single node. Besides, we compare <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> with the contagion threshold of <em>S</em>, which is denoted by <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span> and is the probability of full contagion from <em>S</em> when all nodes share a common adoption threshold <em>q</em> chosen uniformly at random from <span><math><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. We show that the presence of a cycle in <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span> is necessary but not sufficient for <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>S</mi><mo>)</mo></mrow></math></span> to exceed <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>(</mo><mi>S</mi><mo>)</mo></math></span>, which indicates that allowing threshold heterogeneity may not always increase the chance of full contagion. Our framework can be extended to study contagion under various threshold settings.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005514\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005514","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的是一个简单无向连接网络 G 上的线性阈值模型,在该模型中,当且仅当其活跃邻居的比例超过其采用阈值时,每个非种子才会变得活跃。我们将每个阈值函数 ϕ:V→[0,1] 视为 n 立方体 [0,1]n 中的一个点 (j(v1),...,j(vn)),其中 V={v1,...vn} 是 G 中的节点集。因此,S 的传染点集合在 [0,1]n 中的体积表示当每个节点的采用阈值在 [0,1] 中独立均匀分布时,从 S 完全传染的概率,我们称之为 S 的传染概率,用 pc(S) 表示。我们推导出 pc(S)的明确公式,表明 pc(S)取决于 S 通过 G 的商图 GS 的每棵生成树(其中 S 被视为单个节点)产生完全传染的可能性。此外,我们还将 pc(S)与 S 的传染阈值进行了比较,传染阈值用 qc(S)表示,是所有节点共享从 [0,1] 中均匀随机选择的共同采用阈值 q 时,S 产生完全传染的概率。我们的研究表明,GS 中循环的存在是 pc(S) 超过 qc(S) 的必要条件,但不是充分条件,这表明允许阈值异质性并不总能增加完全传染的机会。我们的框架可以扩展到研究各种阈值设置下的传染。
We study a linear threshold model on a simple undirected connected network G where each non-seed becomes active if and only if the proportion of its active neighbors exceeds its adoption threshold. Each threshold function is viewed as a point in the n-cube , where is the set of nodes in G. We define ϕ as a contagious point of a subset S of nodes if it can induce full contagion from S. Consequently, the volume of the set of contagious points of S in represents the probability of full contagion from S when the adoption threshold of each node is independently and uniformly distributed in , which we term the contagion probability of S and denote by . We derive an explicit formula for , showing that is determined by how likely S can produce full contagion exclusively through each spanning tree of the quotient graph of G in which S is treated as a single node. Besides, we compare with the contagion threshold of S, which is denoted by and is the probability of full contagion from S when all nodes share a common adoption threshold q chosen uniformly at random from . We show that the presence of a cycle in is necessary but not sufficient for to exceed , which indicates that allowing threshold heterogeneity may not always increase the chance of full contagion. Our framework can be extended to study contagion under various threshold settings.