{"title":"双枝树的无线电标记","authors":"Devsi Bantva , Samir Vaidya , Sanming Zhou","doi":"10.1016/j.amc.2024.129097","DOIUrl":null,"url":null,"abstract":"<div><div>A radio labelling of a graph <em>G</em> is a mapping <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>}</mo></math></span> such that <span><math><mo>|</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mrow><mi>diam</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mo>−</mo><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> for every pair of distinct vertices <span><math><mi>u</mi><mo>,</mo><mi>v</mi></math></span> of <em>G</em>, where <span><math><mrow><mi>diam</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the diameter of <em>G</em> and <span><math><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> is the distance between <em>u</em> and <em>v</em> in <em>G</em>. The radio number <span><math><mrow><mi>rn</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the smallest integer <em>k</em> such that <em>G</em> admits a radio labelling <em>f</em> with <span><math><mi>max</mi><mo></mo><mo>{</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>:</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo><mo>=</mo><mi>k</mi></math></span>. The weight of a tree <em>T</em> from a vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is the sum of the distances in <em>T</em> from <em>v</em> to all other vertices, and a vertex of <em>T</em> achieving the minimum weight is called a weight centre of <em>T</em>. It is known that any tree has one or two weight centres. A tree is called a two-branch tree if the removal of all its weight centres results in a forest with exactly two components. In this paper we obtain a sharp lower bound for the radio number of two-branch trees which improves a known lower bound for general trees. We also give a necessary and sufficient condition for this improved lower bound to be achieved. Using these results, we determine the radio number of two families of level-wise regular two-branch trees.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radio labelling of two-branch trees\",\"authors\":\"Devsi Bantva , Samir Vaidya , Sanming Zhou\",\"doi\":\"10.1016/j.amc.2024.129097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A radio labelling of a graph <em>G</em> is a mapping <span><math><mi>f</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>}</mo></math></span> such that <span><math><mo>|</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>−</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>|</mo><mo>≥</mo><mrow><mi>diam</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mn>1</mn><mo>−</mo><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> for every pair of distinct vertices <span><math><mi>u</mi><mo>,</mo><mi>v</mi></math></span> of <em>G</em>, where <span><math><mrow><mi>diam</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is the diameter of <em>G</em> and <span><math><mi>d</mi><mo>(</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>)</mo></math></span> is the distance between <em>u</em> and <em>v</em> in <em>G</em>. The radio number <span><math><mrow><mi>rn</mi></mrow><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of <em>G</em> is the smallest integer <em>k</em> such that <em>G</em> admits a radio labelling <em>f</em> with <span><math><mi>max</mi><mo></mo><mo>{</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>:</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>}</mo><mo>=</mo><mi>k</mi></math></span>. The weight of a tree <em>T</em> from a vertex <span><math><mi>v</mi><mo>∈</mo><mi>V</mi><mo>(</mo><mi>T</mi><mo>)</mo></math></span> is the sum of the distances in <em>T</em> from <em>v</em> to all other vertices, and a vertex of <em>T</em> achieving the minimum weight is called a weight centre of <em>T</em>. It is known that any tree has one or two weight centres. A tree is called a two-branch tree if the removal of all its weight centres results in a forest with exactly two components. In this paper we obtain a sharp lower bound for the radio number of two-branch trees which improves a known lower bound for general trees. We also give a necessary and sufficient condition for this improved lower bound to be achieved. Using these results, we determine the radio number of two families of level-wise regular two-branch trees.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005587\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005587","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
图 G 的无线电标注是一个映射 f:V(G)→{0,1,2,...},对于 G 的每一对不同顶点 u,v,|f(u)-f(v)|≥diam(G)+1-d(u,v),其中 diam(G) 是 G 的直径,d(u,v) 是 u 和 v 在 G 中的距离。G 的无线电数 rn(G) 是最小的整数 k,使得 G 允许最大{f(v):v∈V(G)}=k 的无线电标签 f。一棵树 T 从顶点 v∈V(T) 出发的权重是 T 中 v 到所有其他顶点的距离之和,T 中权重最小的顶点称为 T 的权重中心。如果去掉所有的权重中心,得到的森林只有两个部分,那么这棵树就叫做双枝树。在本文中,我们获得了双枝树无线电数的一个尖锐下限,它改进了已知的一般树的下限。我们还给出了实现这一改进下限的必要条件和充分条件。利用这些结果,我们确定了两系平移正则双分支树的无线电数。
A radio labelling of a graph G is a mapping such that for every pair of distinct vertices of G, where is the diameter of G and is the distance between u and v in G. The radio number of G is the smallest integer k such that G admits a radio labelling f with . The weight of a tree T from a vertex is the sum of the distances in T from v to all other vertices, and a vertex of T achieving the minimum weight is called a weight centre of T. It is known that any tree has one or two weight centres. A tree is called a two-branch tree if the removal of all its weight centres results in a forest with exactly two components. In this paper we obtain a sharp lower bound for the radio number of two-branch trees which improves a known lower bound for general trees. We also give a necessary and sufficient condition for this improved lower bound to be achieved. Using these results, we determine the radio number of two families of level-wise regular two-branch trees.