不使用泰勒展开的 Jarratt 型方法及其收敛性分析

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Indra Bate, Kedarnath Senapati, Santhosh George, Muniyasamy M, Chandhini G
{"title":"不使用泰勒展开的 Jarratt 型方法及其收敛性分析","authors":"Indra Bate,&nbsp;Kedarnath Senapati,&nbsp;Santhosh George,&nbsp;Muniyasamy M,&nbsp;Chandhini G","doi":"10.1016/j.amc.2024.129112","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the local convergence analysis of the Jarratt-type iterative methods for solving non-linear equations in the Banach space setting without using the Taylor expansion. Convergence analysis using Taylor series required the operator to be differentiable at least <span><math><mi>p</mi><mo>+</mo><mn>1</mn></math></span> times, where <em>p</em> is the order of convergence. In our convergence analysis, we do not use the Taylor expansion, so we require only assumptions on the derivatives of the involved operator of order up to three only. Thus, we extended the applicability of the methods under study. Further, we obtained a six-order Jarratt-type method by utilising the method studied by Hueso et al. in 2015. Numerical examples and dynamics of the methods are presented to illustrate the theoretical results.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jarratt-type methods and their convergence analysis without using Taylor expansion\",\"authors\":\"Indra Bate,&nbsp;Kedarnath Senapati,&nbsp;Santhosh George,&nbsp;Muniyasamy M,&nbsp;Chandhini G\",\"doi\":\"10.1016/j.amc.2024.129112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the local convergence analysis of the Jarratt-type iterative methods for solving non-linear equations in the Banach space setting without using the Taylor expansion. Convergence analysis using Taylor series required the operator to be differentiable at least <span><math><mi>p</mi><mo>+</mo><mn>1</mn></math></span> times, where <em>p</em> is the order of convergence. In our convergence analysis, we do not use the Taylor expansion, so we require only assumptions on the derivatives of the involved operator of order up to three only. Thus, we extended the applicability of the methods under study. Further, we obtained a six-order Jarratt-type method by utilising the method studied by Hueso et al. in 2015. Numerical examples and dynamics of the methods are presented to illustrate the theoretical results.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005733\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005733","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在巴拿赫空间环境中求解非线性方程的 Jarratt 型迭代法的局部收敛分析,而不使用泰勒展开。使用泰勒级数进行收敛分析要求算子至少可微分 p+1 次,其中 p 是收敛阶数。在我们的收敛分析中,我们不使用泰勒展开,因此我们只需要对所涉及的算子的导数进行最多三阶的假设。因此,我们扩展了所研究方法的适用范围。此外,我们还利用 Hueso 等人在 2015 年研究的方法,获得了六阶 Jarratt 型方法。为了说明理论结果,我们介绍了这些方法的数值示例和动力学原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Jarratt-type methods and their convergence analysis without using Taylor expansion
In this paper, we study the local convergence analysis of the Jarratt-type iterative methods for solving non-linear equations in the Banach space setting without using the Taylor expansion. Convergence analysis using Taylor series required the operator to be differentiable at least p+1 times, where p is the order of convergence. In our convergence analysis, we do not use the Taylor expansion, so we require only assumptions on the derivatives of the involved operator of order up to three only. Thus, we extended the applicability of the methods under study. Further, we obtained a six-order Jarratt-type method by utilising the method studied by Hueso et al. in 2015. Numerical examples and dynamics of the methods are presented to illustrate the theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信