具有多态成分系统的时间相关可靠性计算

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yusuf Bilfaqih, Mochamad Nur Qomarudin, Mochammad Sahal
{"title":"具有多态成分系统的时间相关可靠性计算","authors":"Yusuf Bilfaqih,&nbsp;Mochamad Nur Qomarudin,&nbsp;Mochammad Sahal","doi":"10.1016/j.amc.2024.129082","DOIUrl":null,"url":null,"abstract":"<div><div>System reliability analysis in discrete phase-type (DPH) distributions requires longer computation time as the matrix order increases with the number of components and the complexity of the system structure. This paper presents a method to reduce the computation time by performing a similarity transformation on the DPH distribution model of the component lifetimes. Similarity transformation produces a matrix-geometric (MG) distribution whose generator matrix is in Jordan canonical form with fewer non-zero elements, so the computation time is faster. We modified the algorithms for system reliability in DPH distributions to make them applicable to MG distributions. Our experiments using several Jordan canonical forms show significant reductions in computation times.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-dependent reliability computation of system with multistate components\",\"authors\":\"Yusuf Bilfaqih,&nbsp;Mochamad Nur Qomarudin,&nbsp;Mochammad Sahal\",\"doi\":\"10.1016/j.amc.2024.129082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>System reliability analysis in discrete phase-type (DPH) distributions requires longer computation time as the matrix order increases with the number of components and the complexity of the system structure. This paper presents a method to reduce the computation time by performing a similarity transformation on the DPH distribution model of the component lifetimes. Similarity transformation produces a matrix-geometric (MG) distribution whose generator matrix is in Jordan canonical form with fewer non-zero elements, so the computation time is faster. We modified the algorithms for system reliability in DPH distributions to make them applicable to MG distributions. Our experiments using several Jordan canonical forms show significant reductions in computation times.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005435\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005435","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

离散相型(DPH)分布中的系统可靠性分析需要较长的计算时间,因为矩阵阶数会随着元件数量和系统结构复杂程度的增加而增加。本文提出了一种方法,通过对元件寿命的 DPH 分布模型进行相似性变换来减少计算时间。相似性变换产生的矩阵几何(MG)分布的生成矩阵为约旦规范形式,非零元素较少,因此计算时间更快。我们修改了 DPH 分布中的系统可靠性算法,使其适用于 MG 分布。我们使用几种乔丹规范形式进行的实验表明,计算时间显著缩短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-dependent reliability computation of system with multistate components
System reliability analysis in discrete phase-type (DPH) distributions requires longer computation time as the matrix order increases with the number of components and the complexity of the system structure. This paper presents a method to reduce the computation time by performing a similarity transformation on the DPH distribution model of the component lifetimes. Similarity transformation produces a matrix-geometric (MG) distribution whose generator matrix is in Jordan canonical form with fewer non-zero elements, so the computation time is faster. We modified the algorithms for system reliability in DPH distributions to make them applicable to MG distributions. Our experiments using several Jordan canonical forms show significant reductions in computation times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信