{"title":"阶次为 1n 的 M-赖特函数的斯托克斯现象","authors":"Hassan Askari, Alireza Ansari","doi":"10.1016/j.amc.2024.129088","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, using the higher-order differential equation of M-Wright function (Mainardi function) of order <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>,</mo><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, we get the integral representations for this function and other linear independent functions on the Laplace contours. The Stokes phenomenon and the Stokes/anti-Stokes rays for different domains in the complex plane are also investigated. Our approach is based on the steepest descent method for analyzing and drawing the steepest descent curves/directions for the initial values of <em>n</em>.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stokes phenomenon for the M-Wright function of order 1n\",\"authors\":\"Hassan Askari, Alireza Ansari\",\"doi\":\"10.1016/j.amc.2024.129088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, using the higher-order differential equation of M-Wright function (Mainardi function) of order <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac><mo>,</mo><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, we get the integral representations for this function and other linear independent functions on the Laplace contours. The Stokes phenomenon and the Stokes/anti-Stokes rays for different domains in the complex plane are also investigated. Our approach is based on the steepest descent method for analyzing and drawing the steepest descent curves/directions for the initial values of <em>n</em>.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005496\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005496","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
本文利用阶数为 1n,n≥3 的 M-赖特函数(Mainardi 函数)的高阶微分方程,得到了该函数和其他线性独立函数在拉普拉斯等值线上的积分表示。我们还研究了复平面内不同域的斯托克斯现象和斯托克斯/反斯托克斯射线。我们的方法基于最陡下降法,用于分析和绘制 n 初始值的最陡下降曲线/方向。
Stokes phenomenon for the M-Wright function of order 1n
In this paper, using the higher-order differential equation of M-Wright function (Mainardi function) of order , we get the integral representations for this function and other linear independent functions on the Laplace contours. The Stokes phenomenon and the Stokes/anti-Stokes rays for different domains in the complex plane are also investigated. Our approach is based on the steepest descent method for analyzing and drawing the steepest descent curves/directions for the initial values of n.