随机波动跳跃扩散模型的重加权纳达拉亚-沃森估计

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Shaolin Ji, Linlin Zhu
{"title":"随机波动跳跃扩散模型的重加权纳达拉亚-沃森估计","authors":"Shaolin Ji,&nbsp;Linlin Zhu","doi":"10.1016/j.camwa.2024.09.029","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we construct the reweighted Nadaraya–Watson estimators of the infinitesimal moments for the volatility process of the stochastic volatility models, with the application of the threshold estimator of the unobserved volatility process. Our model includes jumps in both the underlying asset price and its volatility process. We derive the asymptotic properties of the estimators under the infill and long span assumptions. The results are useful for identification of the process. The finite-sample performance of the estimators is studied through Monte Carlo simulation.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"174 ","pages":"Pages 352-360"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reweighted Nadaraya–Watson estimation of stochastic volatility jump-diffusion models\",\"authors\":\"Shaolin Ji,&nbsp;Linlin Zhu\",\"doi\":\"10.1016/j.camwa.2024.09.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we construct the reweighted Nadaraya–Watson estimators of the infinitesimal moments for the volatility process of the stochastic volatility models, with the application of the threshold estimator of the unobserved volatility process. Our model includes jumps in both the underlying asset price and its volatility process. We derive the asymptotic properties of the estimators under the infill and long span assumptions. The results are useful for identification of the process. The finite-sample performance of the estimators is studied through Monte Carlo simulation.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"174 \",\"pages\":\"Pages 352-360\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122124004383\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004383","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们构建了随机波动模型波动过程无穷小矩的重加权 Nadaraya-Watson 估计器,并应用了未观测波动过程的阈值估计器。我们的模型包括基础资产价格及其波动过程的跳跃。我们推导了在填充和长跨度假设下估计器的渐近特性。这些结果有助于识别过程。我们通过蒙特卡罗模拟研究了估计器的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reweighted Nadaraya–Watson estimation of stochastic volatility jump-diffusion models
In this paper, we construct the reweighted Nadaraya–Watson estimators of the infinitesimal moments for the volatility process of the stochastic volatility models, with the application of the threshold estimator of the unobserved volatility process. Our model includes jumps in both the underlying asset price and its volatility process. We derive the asymptotic properties of the estimators under the infill and long span assumptions. The results are useful for identification of the process. The finite-sample performance of the estimators is studied through Monte Carlo simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信