De la Vallée Poussin 半线多项式滤波近似法

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Donatella Occorsio , Woula Themistoclakis
{"title":"De la Vallée Poussin 半线多项式滤波近似法","authors":"Donatella Occorsio ,&nbsp;Woula Themistoclakis","doi":"10.1016/j.apnum.2024.09.003","DOIUrl":null,"url":null,"abstract":"<div><div>On the half line, we introduce a new sequence of near-best uniform approximation polynomials, easily computable by the values of the approximated function at a truncated number of Laguerre zeros. Such approximation polynomials come from a discretization of filtered Fourier–Laguerre partial sums, which are filtered using a de la Vallée Poussin (VP) filter. They have the peculiarity of depending on two parameters: a truncation parameter that determines how many of the <em>n</em> Laguerre zeros are considered, and a localization parameter, which determines the range of action of the VP filter we will apply. As <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, under simple assumptions on such parameters and the Laguerre exponents of the involved weights, we prove that the new VP filtered approximation polynomials have uniformly bounded Lebesgue constants and uniformly convergence at a near–best approximation rate, for any locally continuous function on the semiaxis.</div><div>The numerical experiments have validated the theoretical results. In particular, they show a better performance of the proposed VP filtered approximation versus the truncated Lagrange interpolation at the same nodes, especially for functions a.e. very smooth with isolated singularities. In such cases, we see a more localized approximation and a satisfactory reduction of the Gibbs phenomenon.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De la Vallée Poussin filtered polynomial approximation on the half–line\",\"authors\":\"Donatella Occorsio ,&nbsp;Woula Themistoclakis\",\"doi\":\"10.1016/j.apnum.2024.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>On the half line, we introduce a new sequence of near-best uniform approximation polynomials, easily computable by the values of the approximated function at a truncated number of Laguerre zeros. Such approximation polynomials come from a discretization of filtered Fourier–Laguerre partial sums, which are filtered using a de la Vallée Poussin (VP) filter. They have the peculiarity of depending on two parameters: a truncation parameter that determines how many of the <em>n</em> Laguerre zeros are considered, and a localization parameter, which determines the range of action of the VP filter we will apply. As <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>, under simple assumptions on such parameters and the Laguerre exponents of the involved weights, we prove that the new VP filtered approximation polynomials have uniformly bounded Lebesgue constants and uniformly convergence at a near–best approximation rate, for any locally continuous function on the semiaxis.</div><div>The numerical experiments have validated the theoretical results. In particular, they show a better performance of the proposed VP filtered approximation versus the truncated Lagrange interpolation at the same nodes, especially for functions a.e. very smooth with isolated singularities. In such cases, we see a more localized approximation and a satisfactory reduction of the Gibbs phenomenon.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

在半线上,我们引入了一系列新的近似最佳均匀近似多项式,这些多项式可以通过近似函数在截断的拉盖尔零点处的值轻松计算。这些近似多项式来自滤波傅立叶-拉盖尔偏和(Fourier-Laguerre partial sums)的离散化,并使用 de la Vallée Poussin(VP)滤波器进行滤波。它们的特殊性在于取决于两个参数:一个是截断参数,它决定考虑 n 个拉盖尔零点中的多少个;另一个是定位参数,它决定我们将应用的 VP 滤波器的作用范围。当 n→∞ 时,根据对这些参数和相关权重的拉盖尔指数的简单假设,我们证明了新的 VP 滤波近似多项式对于半轴上的任何局部连续函数,都具有均匀有界的 Lebesgue 常数,并以接近最佳的近似率均匀收敛。数值实验验证了理论结果,特别是在相同节点上,与截断拉格朗日插值法相比,所提出的 VP 滤波近似法具有更好的性能,尤其是对于具有孤立奇点的非常光滑的函数。在这种情况下,我们可以看到更局部的近似和令人满意的吉布斯现象的减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
De la Vallée Poussin filtered polynomial approximation on the half–line
On the half line, we introduce a new sequence of near-best uniform approximation polynomials, easily computable by the values of the approximated function at a truncated number of Laguerre zeros. Such approximation polynomials come from a discretization of filtered Fourier–Laguerre partial sums, which are filtered using a de la Vallée Poussin (VP) filter. They have the peculiarity of depending on two parameters: a truncation parameter that determines how many of the n Laguerre zeros are considered, and a localization parameter, which determines the range of action of the VP filter we will apply. As n, under simple assumptions on such parameters and the Laguerre exponents of the involved weights, we prove that the new VP filtered approximation polynomials have uniformly bounded Lebesgue constants and uniformly convergence at a near–best approximation rate, for any locally continuous function on the semiaxis.
The numerical experiments have validated the theoretical results. In particular, they show a better performance of the proposed VP filtered approximation versus the truncated Lagrange interpolation at the same nodes, especially for functions a.e. very smooth with isolated singularities. In such cases, we see a more localized approximation and a satisfactory reduction of the Gibbs phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信