{"title":"针对非稳态自然对流问题的二阶 sav 滤波时间步进有限元法分析","authors":"Mengru Jiang , Jilian Wu , Ning Li , Xinlong Feng","doi":"10.1016/j.cnsns.2024.108365","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an unconditionally stable time-filtering algorithm for natural convection equations. The algorithm is based on the scalar auxiliary variables in the exponential function and adopts a completely discrete Back-Euler combining time filter scheme. The proposed scheme requires minimal invasive modification of the existing program to improve the time accuracy from first-order to second-order without increasing the computational complexity, and we demonstrate the unconditional stability of the proposed algorithm and analyze its second-order convergence. In addition, due to the increasing demand for low-memory solvers, the application of a time-adaptive algorithm can improve the accuracy and efficiency of the proposed algorithm, so we extend the method to variable step sizes and construct an adaptive algorithm. Finally, the effectiveness of the proposed method and the accuracy of the theoretical results are verified by numerical experiments.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of second-order sav-filtered time-stepping finite element method for unsteady natural convection problems\",\"authors\":\"Mengru Jiang , Jilian Wu , Ning Li , Xinlong Feng\",\"doi\":\"10.1016/j.cnsns.2024.108365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an unconditionally stable time-filtering algorithm for natural convection equations. The algorithm is based on the scalar auxiliary variables in the exponential function and adopts a completely discrete Back-Euler combining time filter scheme. The proposed scheme requires minimal invasive modification of the existing program to improve the time accuracy from first-order to second-order without increasing the computational complexity, and we demonstrate the unconditional stability of the proposed algorithm and analyze its second-order convergence. In addition, due to the increasing demand for low-memory solvers, the application of a time-adaptive algorithm can improve the accuracy and efficiency of the proposed algorithm, so we extend the method to variable step sizes and construct an adaptive algorithm. Finally, the effectiveness of the proposed method and the accuracy of the theoretical results are verified by numerical experiments.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424005501\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005501","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
An analysis of second-order sav-filtered time-stepping finite element method for unsteady natural convection problems
This paper presents an unconditionally stable time-filtering algorithm for natural convection equations. The algorithm is based on the scalar auxiliary variables in the exponential function and adopts a completely discrete Back-Euler combining time filter scheme. The proposed scheme requires minimal invasive modification of the existing program to improve the time accuracy from first-order to second-order without increasing the computational complexity, and we demonstrate the unconditional stability of the proposed algorithm and analyze its second-order convergence. In addition, due to the increasing demand for low-memory solvers, the application of a time-adaptive algorithm can improve the accuracy and efficiency of the proposed algorithm, so we extend the method to variable step sizes and construct an adaptive algorithm. Finally, the effectiveness of the proposed method and the accuracy of the theoretical results are verified by numerical experiments.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.