应变诱导结晶弹性体的裂纹尖端应力强化

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Thanh-Tam Mai , Katsuhiko Tsunoda , Kenji Urayama
{"title":"应变诱导结晶弹性体的裂纹尖端应力强化","authors":"Thanh-Tam Mai ,&nbsp;Katsuhiko Tsunoda ,&nbsp;Kenji Urayama","doi":"10.1016/j.jmps.2024.105895","DOIUrl":null,"url":null,"abstract":"<div><div>Natural rubber (NR) exhibits strain-induced crystallization (SIC), enhancing tearing strength and crack resistance. However, the reinforcement mechanism along with nonuniform strain around a crack tip remains unclear. We reveal the nonuniform stress field around a crack tip using the DIC-based deformation field data and a hyperelasticity approach. A hyperelastic strain energy density function (<em>W</em>) is derived to be able to replicate stress-strain data across various deformations, encompassing equal and unequal biaxial, uniaxial, and pure shear stretching. These data cover the full range and magnitude of deformations around the crack tip. SIC significantly impacts the singular behaviors of strain and stress near the crack tip, causing a pronounced stress increase and strain decrease within the SIC zone that extends up to approximately 100 μm away from the crack tip. This results in a distinct crossover in singularity power-law index between the SIC zone and the fully amorphous zone. With increasing crack opening, the stress upturn intensifies, and the crossover shifts away from the crack tip due to SIC zone enlargement and local crystallinity increase. These findings deepen our understanding of the physics of SIC near crack tips and its reinforcement mechanism in strain-induced crystallizable soft solid materials.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105895"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crack tip stress intensification in strain-induced crystallized elastomer\",\"authors\":\"Thanh-Tam Mai ,&nbsp;Katsuhiko Tsunoda ,&nbsp;Kenji Urayama\",\"doi\":\"10.1016/j.jmps.2024.105895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Natural rubber (NR) exhibits strain-induced crystallization (SIC), enhancing tearing strength and crack resistance. However, the reinforcement mechanism along with nonuniform strain around a crack tip remains unclear. We reveal the nonuniform stress field around a crack tip using the DIC-based deformation field data and a hyperelasticity approach. A hyperelastic strain energy density function (<em>W</em>) is derived to be able to replicate stress-strain data across various deformations, encompassing equal and unequal biaxial, uniaxial, and pure shear stretching. These data cover the full range and magnitude of deformations around the crack tip. SIC significantly impacts the singular behaviors of strain and stress near the crack tip, causing a pronounced stress increase and strain decrease within the SIC zone that extends up to approximately 100 μm away from the crack tip. This results in a distinct crossover in singularity power-law index between the SIC zone and the fully amorphous zone. With increasing crack opening, the stress upturn intensifies, and the crossover shifts away from the crack tip due to SIC zone enlargement and local crystallinity increase. These findings deepen our understanding of the physics of SIC near crack tips and its reinforcement mechanism in strain-induced crystallizable soft solid materials.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105895\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003612\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003612","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

天然橡胶(NR)具有应变诱导结晶(SIC)特性,可提高撕裂强度和抗裂性。然而,裂纹尖端周围的非均匀应变的强化机制仍不清楚。我们利用基于 DIC 的变形场数据和超弹性方法揭示了裂纹尖端周围的非均匀应力场。超弹性应变能量密度函数(W)可用于复制各种变形的应力应变数据,包括等量和不等量双轴、单轴和纯剪切拉伸。这些数据涵盖了裂纹尖端周围的全部变形范围和幅度。SIC 极大地影响了裂纹尖端附近应变和应力的奇异行为,导致 SIC 区域内应力明显增加,应变明显减小,该区域延伸至裂纹尖端约 100 μm 处。这导致在 SIC 区和全非晶区之间出现明显的奇异幂律指数交叉。随着裂纹开口的增大,应力上行加剧,由于 SIC 区扩大和局部结晶度增加,交叉点远离裂纹尖端。这些发现加深了我们对裂纹尖端附近 SIC 的物理特性及其在应变诱导可结晶软固体材料中的强化机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crack tip stress intensification in strain-induced crystallized elastomer
Natural rubber (NR) exhibits strain-induced crystallization (SIC), enhancing tearing strength and crack resistance. However, the reinforcement mechanism along with nonuniform strain around a crack tip remains unclear. We reveal the nonuniform stress field around a crack tip using the DIC-based deformation field data and a hyperelasticity approach. A hyperelastic strain energy density function (W) is derived to be able to replicate stress-strain data across various deformations, encompassing equal and unequal biaxial, uniaxial, and pure shear stretching. These data cover the full range and magnitude of deformations around the crack tip. SIC significantly impacts the singular behaviors of strain and stress near the crack tip, causing a pronounced stress increase and strain decrease within the SIC zone that extends up to approximately 100 μm away from the crack tip. This results in a distinct crossover in singularity power-law index between the SIC zone and the fully amorphous zone. With increasing crack opening, the stress upturn intensifies, and the crossover shifts away from the crack tip due to SIC zone enlargement and local crystallinity increase. These findings deepen our understanding of the physics of SIC near crack tips and its reinforcement mechanism in strain-induced crystallizable soft solid materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信