Mengcheng Huang , Chang Liu , Yilin Guo , Linfeng Zhang , Zongliang Du , Xu Guo
{"title":"基于力学的无数据问题独立机器学习(PIML)模型,用于大规模结构分析和设计优化","authors":"Mengcheng Huang , Chang Liu , Yilin Guo , Linfeng Zhang , Zongliang Du , Xu Guo","doi":"10.1016/j.jmps.2024.105893","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning (ML) enhanced fast structural analysis and design recently attracted considerable attention. In most related works, however, the generalization ability of the ML model and the massive cost of dataset generation are the two most criticized aspects. This work combines the advantages of the universality of the substructure method and the superior predictive ability of the operator learning architecture. Specifically, using a novel mechanics-based loss function, lightweight neural network mapping from the material distribution inside a substructure and the corresponding continuous multiscale shape function is well-trained without preparing a dataset. In this manner, a problem machine learning model (PIML) that is generally applicable for efficient linear elastic analysis and design optimization of large-scale structures with arbitrary size and various boundary conditions is proposed. Several examples validate the effectiveness of the present work on efficiency improvement and different kinds of optimization problems. This PIML model-based design and optimization framework can be extended to large-scale multiphysics problems.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"193 ","pages":"Article 105893"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanics-based data-free Problem Independent Machine Learning (PIML) model for large-scale structural analysis and design optimization\",\"authors\":\"Mengcheng Huang , Chang Liu , Yilin Guo , Linfeng Zhang , Zongliang Du , Xu Guo\",\"doi\":\"10.1016/j.jmps.2024.105893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine learning (ML) enhanced fast structural analysis and design recently attracted considerable attention. In most related works, however, the generalization ability of the ML model and the massive cost of dataset generation are the two most criticized aspects. This work combines the advantages of the universality of the substructure method and the superior predictive ability of the operator learning architecture. Specifically, using a novel mechanics-based loss function, lightweight neural network mapping from the material distribution inside a substructure and the corresponding continuous multiscale shape function is well-trained without preparing a dataset. In this manner, a problem machine learning model (PIML) that is generally applicable for efficient linear elastic analysis and design optimization of large-scale structures with arbitrary size and various boundary conditions is proposed. Several examples validate the effectiveness of the present work on efficiency improvement and different kinds of optimization problems. This PIML model-based design and optimization framework can be extended to large-scale multiphysics problems.</div></div>\",\"PeriodicalId\":17331,\"journal\":{\"name\":\"Journal of The Mechanics and Physics of Solids\",\"volume\":\"193 \",\"pages\":\"Article 105893\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Mechanics and Physics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022509624003594\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624003594","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A mechanics-based data-free Problem Independent Machine Learning (PIML) model for large-scale structural analysis and design optimization
Machine learning (ML) enhanced fast structural analysis and design recently attracted considerable attention. In most related works, however, the generalization ability of the ML model and the massive cost of dataset generation are the two most criticized aspects. This work combines the advantages of the universality of the substructure method and the superior predictive ability of the operator learning architecture. Specifically, using a novel mechanics-based loss function, lightweight neural network mapping from the material distribution inside a substructure and the corresponding continuous multiscale shape function is well-trained without preparing a dataset. In this manner, a problem machine learning model (PIML) that is generally applicable for efficient linear elastic analysis and design optimization of large-scale structures with arbitrary size and various boundary conditions is proposed. Several examples validate the effectiveness of the present work on efficiency improvement and different kinds of optimization problems. This PIML model-based design and optimization framework can be extended to large-scale multiphysics problems.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.