Young-Ho Nam , Seok-Young Lee , Seung-Ki Lee , Jong-Ho Kim , Jae-Hyoung Park
{"title":"利用介电泳技术高效捕获和浓缩细菌大小微粒的三维微尖电极微流体装置","authors":"Young-Ho Nam , Seok-Young Lee , Seung-Ki Lee , Jong-Ho Kim , Jae-Hyoung Park","doi":"10.1016/j.sna.2024.115957","DOIUrl":null,"url":null,"abstract":"<div><div>Microfluidics-based systems have gained considerable attention in the lab-on-chip field owing to their ability to separate, concentrate, and analyze microparticles. Concentrating microparticles is crucial for the high-sensitivity measurement of biomarkers in the analysis of cells or bacteria. This study presents a microfluidic chip using dielectrophoresis (DEP) to capture bacterial microparticles. The chip features a vertically arranged microtip electrode and an indium tin oxide (ITO) electrode, enhancing the electric field concentration effect and enabling optical analysis of the collected particles. The device was designed and fabricated using microfabrication techniques that incorporate a patterned array of microtip electrodes on a polydimethylsiloxane (PDMS) substrate. Experimental studies and numerical simulations were conducted to evaluate the device performance. The fabricated device was applied to the concentration of fluorescent beads with various variables such as particle size, frequency, voltage, and flow rate. The experimental results demonstrated the successful trapping and concentration of microparticles using DEP forces. The recovery rates of the 2.29 µm and 4.42 µm PS beads, when introduced at a flow rate of 1 μL/min and subjected to an applied alternating current (AC) voltage of 200 kHz and 10 V<sub>pp</sub> at the microtip electrode, were measured to be 85.50±2.69 % and 91.83±0.63 %, respectively. Additionally, to assess the applicability of the microtip electrode-based DEP device proposed here for bacteria concentration, capture experiments were conducted using <em>Escherichia coli</em>, demonstrating a recovery rate performance of 77.93±7.31 %. These findings highlight the potential of the proposed microfluidic chip for the concentration and measurement of bacteria, such as <em>E. coli</em>.</div></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic device with three-dimensional microtip electrodes for efficient capture and concentration of bacteria-sized microparticles using dielectrophoresis\",\"authors\":\"Young-Ho Nam , Seok-Young Lee , Seung-Ki Lee , Jong-Ho Kim , Jae-Hyoung Park\",\"doi\":\"10.1016/j.sna.2024.115957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microfluidics-based systems have gained considerable attention in the lab-on-chip field owing to their ability to separate, concentrate, and analyze microparticles. Concentrating microparticles is crucial for the high-sensitivity measurement of biomarkers in the analysis of cells or bacteria. This study presents a microfluidic chip using dielectrophoresis (DEP) to capture bacterial microparticles. The chip features a vertically arranged microtip electrode and an indium tin oxide (ITO) electrode, enhancing the electric field concentration effect and enabling optical analysis of the collected particles. The device was designed and fabricated using microfabrication techniques that incorporate a patterned array of microtip electrodes on a polydimethylsiloxane (PDMS) substrate. Experimental studies and numerical simulations were conducted to evaluate the device performance. The fabricated device was applied to the concentration of fluorescent beads with various variables such as particle size, frequency, voltage, and flow rate. The experimental results demonstrated the successful trapping and concentration of microparticles using DEP forces. The recovery rates of the 2.29 µm and 4.42 µm PS beads, when introduced at a flow rate of 1 μL/min and subjected to an applied alternating current (AC) voltage of 200 kHz and 10 V<sub>pp</sub> at the microtip electrode, were measured to be 85.50±2.69 % and 91.83±0.63 %, respectively. Additionally, to assess the applicability of the microtip electrode-based DEP device proposed here for bacteria concentration, capture experiments were conducted using <em>Escherichia coli</em>, demonstrating a recovery rate performance of 77.93±7.31 %. These findings highlight the potential of the proposed microfluidic chip for the concentration and measurement of bacteria, such as <em>E. coli</em>.</div></div>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724009518\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724009518","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Microfluidic device with three-dimensional microtip electrodes for efficient capture and concentration of bacteria-sized microparticles using dielectrophoresis
Microfluidics-based systems have gained considerable attention in the lab-on-chip field owing to their ability to separate, concentrate, and analyze microparticles. Concentrating microparticles is crucial for the high-sensitivity measurement of biomarkers in the analysis of cells or bacteria. This study presents a microfluidic chip using dielectrophoresis (DEP) to capture bacterial microparticles. The chip features a vertically arranged microtip electrode and an indium tin oxide (ITO) electrode, enhancing the electric field concentration effect and enabling optical analysis of the collected particles. The device was designed and fabricated using microfabrication techniques that incorporate a patterned array of microtip electrodes on a polydimethylsiloxane (PDMS) substrate. Experimental studies and numerical simulations were conducted to evaluate the device performance. The fabricated device was applied to the concentration of fluorescent beads with various variables such as particle size, frequency, voltage, and flow rate. The experimental results demonstrated the successful trapping and concentration of microparticles using DEP forces. The recovery rates of the 2.29 µm and 4.42 µm PS beads, when introduced at a flow rate of 1 μL/min and subjected to an applied alternating current (AC) voltage of 200 kHz and 10 Vpp at the microtip electrode, were measured to be 85.50±2.69 % and 91.83±0.63 %, respectively. Additionally, to assess the applicability of the microtip electrode-based DEP device proposed here for bacteria concentration, capture experiments were conducted using Escherichia coli, demonstrating a recovery rate performance of 77.93±7.31 %. These findings highlight the potential of the proposed microfluidic chip for the concentration and measurement of bacteria, such as E. coli.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.