{"title":"基于由旋转扩散驱动的寡核苷酸功能化 Janus 粒子动力学的新型 RNA 传感器","authors":"Maho Koda , Shuto Yajima , Satoshi Amaya , Wei-Long Chen , Han-Sheng Chuang , Eiichiro Takamura , Hiroaki Sakamoto , Shin-ichiro Suye","doi":"10.1016/j.sna.2024.115920","DOIUrl":null,"url":null,"abstract":"<div><div>PCR tests are used to diagnose infections caused by high-risk viruses and infectious bacteria, including novel coronaviruses. However, the current methods are problematic because of their long testing time and operational complexity. In this study, we focused on rotational Brownian motion that changes microscopically. We developed a new biosensor that is specific, quick, and facile for detecting target DNA/RNA by photographing the rotational Brownian motion of oligonucleotide probe-modified Janus particles under a microscope and analyzing the diffusivity, which is the degree of motion. The Stokes–Einstein–Debye relationship shows the rotational diffusivity of the particles is inversely proportional to the particle size cubed. For Janus particles, which emit fluorescence on only half of their surface, the rotational diffusivity corresponds to the correlation time, which is the correlation intensity per elapsed time of the flashing signal obtained from the rotational Brownian motion of the particles. In the presence of the target RNA, Janus particles captured the RNA, leading to the formation of Janus particle-RNA complexes and an increase in particle volume, which increased the correlation time. The correlation time of the Janus particle-target RNA complexes increased with increasing target RNA concentrations.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"379 ","pages":"Article 115920"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel RNA sensor based on dynamics of oligonucleotide-functionalized Janus particles driven by rotational diffusion\",\"authors\":\"Maho Koda , Shuto Yajima , Satoshi Amaya , Wei-Long Chen , Han-Sheng Chuang , Eiichiro Takamura , Hiroaki Sakamoto , Shin-ichiro Suye\",\"doi\":\"10.1016/j.sna.2024.115920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>PCR tests are used to diagnose infections caused by high-risk viruses and infectious bacteria, including novel coronaviruses. However, the current methods are problematic because of their long testing time and operational complexity. In this study, we focused on rotational Brownian motion that changes microscopically. We developed a new biosensor that is specific, quick, and facile for detecting target DNA/RNA by photographing the rotational Brownian motion of oligonucleotide probe-modified Janus particles under a microscope and analyzing the diffusivity, which is the degree of motion. The Stokes–Einstein–Debye relationship shows the rotational diffusivity of the particles is inversely proportional to the particle size cubed. For Janus particles, which emit fluorescence on only half of their surface, the rotational diffusivity corresponds to the correlation time, which is the correlation intensity per elapsed time of the flashing signal obtained from the rotational Brownian motion of the particles. In the presence of the target RNA, Janus particles captured the RNA, leading to the formation of Janus particle-RNA complexes and an increase in particle volume, which increased the correlation time. The correlation time of the Janus particle-target RNA complexes increased with increasing target RNA concentrations.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"379 \",\"pages\":\"Article 115920\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724009142\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724009142","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A novel RNA sensor based on dynamics of oligonucleotide-functionalized Janus particles driven by rotational diffusion
PCR tests are used to diagnose infections caused by high-risk viruses and infectious bacteria, including novel coronaviruses. However, the current methods are problematic because of their long testing time and operational complexity. In this study, we focused on rotational Brownian motion that changes microscopically. We developed a new biosensor that is specific, quick, and facile for detecting target DNA/RNA by photographing the rotational Brownian motion of oligonucleotide probe-modified Janus particles under a microscope and analyzing the diffusivity, which is the degree of motion. The Stokes–Einstein–Debye relationship shows the rotational diffusivity of the particles is inversely proportional to the particle size cubed. For Janus particles, which emit fluorescence on only half of their surface, the rotational diffusivity corresponds to the correlation time, which is the correlation intensity per elapsed time of the flashing signal obtained from the rotational Brownian motion of the particles. In the presence of the target RNA, Janus particles captured the RNA, leading to the formation of Janus particle-RNA complexes and an increase in particle volume, which increased the correlation time. The correlation time of the Janus particle-target RNA complexes increased with increasing target RNA concentrations.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...