高带宽、大放大比压电液压微位移放大器的设计与分析

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wanghu Zhan, Shuo Chen, Kai Li, Junkao Liu, Yingxiang Liu, Weishan Chen
{"title":"高带宽、大放大比压电液压微位移放大器的设计与分析","authors":"Wanghu Zhan,&nbsp;Shuo Chen,&nbsp;Kai Li,&nbsp;Junkao Liu,&nbsp;Yingxiang Liu,&nbsp;Weishan Chen","doi":"10.1016/j.sna.2024.115899","DOIUrl":null,"url":null,"abstract":"<div><div>Micro-displacement amplifiers show great potential for enhancing the performance of piezoelectric ceramic stacks. However, designing a compact micro-displacement amplifier with a high amplification ratio and broad bandwidth remains challenging. This article introduces a hydraulic micro-displacement amplifier driven by a piezoelectric ceramic stack with a large amplification ratio, high bandwidth, and eliminating parasitic displacement. Theoretical and simulation analyses are performed for the hydraulic micro-displacement amplifier, optimizing parameters such as edge thin ring thickness and spring stiffness. A prototype was fabricated and tested in a series of experiments. The experimental results demonstrate that, under steady-state conditions, the hydraulic micro-displacement amplifier achieves an amplification ratio of 26.12 with a standard deviation of 2.28. The maximum output displacement is 172.4 <span><math><mtext>μm</mtext></math></span> at 150 V, and the resonant frequency is 445 Hz under a 20 N load. This study provides a novel approach to designing micro-displacement amplifiers.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"379 ","pages":"Article 115899"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of a piezo-actuated hydraulic micro-displacement amplifier with high bandwidth and large amplification ratio\",\"authors\":\"Wanghu Zhan,&nbsp;Shuo Chen,&nbsp;Kai Li,&nbsp;Junkao Liu,&nbsp;Yingxiang Liu,&nbsp;Weishan Chen\",\"doi\":\"10.1016/j.sna.2024.115899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Micro-displacement amplifiers show great potential for enhancing the performance of piezoelectric ceramic stacks. However, designing a compact micro-displacement amplifier with a high amplification ratio and broad bandwidth remains challenging. This article introduces a hydraulic micro-displacement amplifier driven by a piezoelectric ceramic stack with a large amplification ratio, high bandwidth, and eliminating parasitic displacement. Theoretical and simulation analyses are performed for the hydraulic micro-displacement amplifier, optimizing parameters such as edge thin ring thickness and spring stiffness. A prototype was fabricated and tested in a series of experiments. The experimental results demonstrate that, under steady-state conditions, the hydraulic micro-displacement amplifier achieves an amplification ratio of 26.12 with a standard deviation of 2.28. The maximum output displacement is 172.4 <span><math><mtext>μm</mtext></math></span> at 150 V, and the resonant frequency is 445 Hz under a 20 N load. This study provides a novel approach to designing micro-displacement amplifiers.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"379 \",\"pages\":\"Article 115899\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724008938\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008938","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

微位移放大器在提高压电陶瓷叠层的性能方面显示出巨大的潜力。然而,设计一种具有高放大比和宽带宽的紧凑型微位移放大器仍然具有挑战性。本文介绍了一种由压电陶瓷堆栈驱动的液压微位移放大器,它具有大放大比、高带宽和消除寄生位移的特点。文章对液压微位移放大器进行了理论和仿真分析,优化了边缘薄环厚度和弹簧刚度等参数。制作了一个原型,并在一系列实验中进行了测试。实验结果表明,在稳态条件下,液压微位移放大器的放大比率为 26.12,标准偏差为 2.28。在 150 V 电压下,最大输出位移为 172.4 μm,在 20 N 负载下,谐振频率为 445 Hz。这项研究为设计微位移放大器提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and analysis of a piezo-actuated hydraulic micro-displacement amplifier with high bandwidth and large amplification ratio
Micro-displacement amplifiers show great potential for enhancing the performance of piezoelectric ceramic stacks. However, designing a compact micro-displacement amplifier with a high amplification ratio and broad bandwidth remains challenging. This article introduces a hydraulic micro-displacement amplifier driven by a piezoelectric ceramic stack with a large amplification ratio, high bandwidth, and eliminating parasitic displacement. Theoretical and simulation analyses are performed for the hydraulic micro-displacement amplifier, optimizing parameters such as edge thin ring thickness and spring stiffness. A prototype was fabricated and tested in a series of experiments. The experimental results demonstrate that, under steady-state conditions, the hydraulic micro-displacement amplifier achieves an amplification ratio of 26.12 with a standard deviation of 2.28. The maximum output displacement is 172.4 μm at 150 V, and the resonant frequency is 445 Hz under a 20 N load. This study provides a novel approach to designing micro-displacement amplifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信