Yibing Tan , Shanshan Wang , Ruibin Xue , Sanbao Zhang , Tianyu Wang , Jiaqi Liu , Bin Zhou
{"title":"基于 OCO-2 卫星 XCO2 数据和随机森林模型的中国各集群地区碳排放估算","authors":"Yibing Tan , Shanshan Wang , Ruibin Xue , Sanbao Zhang , Tianyu Wang , Jiaqi Liu , Bin Zhou","doi":"10.1016/j.atmosenv.2024.120860","DOIUrl":null,"url":null,"abstract":"<div><div>Atmospheric carbon dioxide (CO<sub>2</sub>) stands as one of the most important greenhouse gasses, with steadily increasing concentrations attributable to human activities. In the pursuit of reaching peak carbon and carbon neutrality goals, it is essential to quantify carbon emissions and evaluate carbon reduction strategies. To establish a high-precision observation with full time series and spatial coverage, a spatio-temporal interpolation method was developed to obtain XCO<sub>2</sub> data over mainland China at a resolution of 0.5° × 0.5° for the years 2015–2021. An east-west gradient, higher levels in the east and lower levels in the west, was observed, exhibiting a seasonal pattern of elevation in spring and reduction in summer. Subsequently, the research area is classified into seven clusters based on time-series XCO<sub>2</sub> anomalies (ΔXCO<sub>2</sub>) and ODIAC (Open Source Data Inventory of Anthropogenic Carbon Dioxide) carbon emission data. This classification aims to emphasize the differentiation of spatial heterogeneity in carbon emissions and the results highlight that regions with high ΔXCO<sub>2</sub> reflect higher carbon emission. Finally, the carbon emissions of each cluster were estimated by using a random forest model individually yielding an R<sup>2</sup> of approximately 0.6. For assessing the variables influencing carbon emission predictions, the importance of each variable was calculated. Specifically, NightTime Lighting data (NTL), representing human production activities, emerged as a crucial variable influencing carbon emission predictions in most clusters. In comparison, Gross Primary Productivity (GPP) is considered a more critical variable in Southwest China (SWC), primarily owing to the intricate vegetation carbon sink system in this region. Temperature (T) emerges as a key variable influencing the estimation of carbon emissions in certain developed cities in Eastern China (EC), driven by the urban heat island effect which amplifies energy consumption, modifies land use, and impacts urban systems, influencing the spatial patterns of carbon emissions. Carbon emissions in different characteristic regions was quantified by establishing machine learning models with remote sensing data, which can provide new insights and support for refined carbon monitoring and management strategy.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"338 ","pages":"Article 120860"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of carbon emissions in various clustered regions of China based on OCO-2 satellite XCO2 data and random forest modelling\",\"authors\":\"Yibing Tan , Shanshan Wang , Ruibin Xue , Sanbao Zhang , Tianyu Wang , Jiaqi Liu , Bin Zhou\",\"doi\":\"10.1016/j.atmosenv.2024.120860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Atmospheric carbon dioxide (CO<sub>2</sub>) stands as one of the most important greenhouse gasses, with steadily increasing concentrations attributable to human activities. In the pursuit of reaching peak carbon and carbon neutrality goals, it is essential to quantify carbon emissions and evaluate carbon reduction strategies. To establish a high-precision observation with full time series and spatial coverage, a spatio-temporal interpolation method was developed to obtain XCO<sub>2</sub> data over mainland China at a resolution of 0.5° × 0.5° for the years 2015–2021. An east-west gradient, higher levels in the east and lower levels in the west, was observed, exhibiting a seasonal pattern of elevation in spring and reduction in summer. Subsequently, the research area is classified into seven clusters based on time-series XCO<sub>2</sub> anomalies (ΔXCO<sub>2</sub>) and ODIAC (Open Source Data Inventory of Anthropogenic Carbon Dioxide) carbon emission data. This classification aims to emphasize the differentiation of spatial heterogeneity in carbon emissions and the results highlight that regions with high ΔXCO<sub>2</sub> reflect higher carbon emission. Finally, the carbon emissions of each cluster were estimated by using a random forest model individually yielding an R<sup>2</sup> of approximately 0.6. For assessing the variables influencing carbon emission predictions, the importance of each variable was calculated. Specifically, NightTime Lighting data (NTL), representing human production activities, emerged as a crucial variable influencing carbon emission predictions in most clusters. In comparison, Gross Primary Productivity (GPP) is considered a more critical variable in Southwest China (SWC), primarily owing to the intricate vegetation carbon sink system in this region. Temperature (T) emerges as a key variable influencing the estimation of carbon emissions in certain developed cities in Eastern China (EC), driven by the urban heat island effect which amplifies energy consumption, modifies land use, and impacts urban systems, influencing the spatial patterns of carbon emissions. Carbon emissions in different characteristic regions was quantified by establishing machine learning models with remote sensing data, which can provide new insights and support for refined carbon monitoring and management strategy.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"338 \",\"pages\":\"Article 120860\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005351\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005351","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Estimation of carbon emissions in various clustered regions of China based on OCO-2 satellite XCO2 data and random forest modelling
Atmospheric carbon dioxide (CO2) stands as one of the most important greenhouse gasses, with steadily increasing concentrations attributable to human activities. In the pursuit of reaching peak carbon and carbon neutrality goals, it is essential to quantify carbon emissions and evaluate carbon reduction strategies. To establish a high-precision observation with full time series and spatial coverage, a spatio-temporal interpolation method was developed to obtain XCO2 data over mainland China at a resolution of 0.5° × 0.5° for the years 2015–2021. An east-west gradient, higher levels in the east and lower levels in the west, was observed, exhibiting a seasonal pattern of elevation in spring and reduction in summer. Subsequently, the research area is classified into seven clusters based on time-series XCO2 anomalies (ΔXCO2) and ODIAC (Open Source Data Inventory of Anthropogenic Carbon Dioxide) carbon emission data. This classification aims to emphasize the differentiation of spatial heterogeneity in carbon emissions and the results highlight that regions with high ΔXCO2 reflect higher carbon emission. Finally, the carbon emissions of each cluster were estimated by using a random forest model individually yielding an R2 of approximately 0.6. For assessing the variables influencing carbon emission predictions, the importance of each variable was calculated. Specifically, NightTime Lighting data (NTL), representing human production activities, emerged as a crucial variable influencing carbon emission predictions in most clusters. In comparison, Gross Primary Productivity (GPP) is considered a more critical variable in Southwest China (SWC), primarily owing to the intricate vegetation carbon sink system in this region. Temperature (T) emerges as a key variable influencing the estimation of carbon emissions in certain developed cities in Eastern China (EC), driven by the urban heat island effect which amplifies energy consumption, modifies land use, and impacts urban systems, influencing the spatial patterns of carbon emissions. Carbon emissions in different characteristic regions was quantified by establishing machine learning models with remote sensing data, which can provide new insights and support for refined carbon monitoring and management strategy.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.