Baobin Han , Yingjie Zhang , Wenda Yang , Yihang Yu , Ke Tang , Yujie Tian , Yucheng Gong , Bingna Chen , Peng Cheng
{"title":"中国珠江三角洲稻田上空的 HONO 表面交换","authors":"Baobin Han , Yingjie Zhang , Wenda Yang , Yihang Yu , Ke Tang , Yujie Tian , Yucheng Gong , Bingna Chen , Peng Cheng","doi":"10.1016/j.atmosenv.2024.120853","DOIUrl":null,"url":null,"abstract":"<div><div>Soil can release HONO, affecting atmospheric oxidation and tropospheric chemistry processes through the production of hydroxyl radicals (OH) and nitric oxide (NO) via photolysis. However, there is limited field observation of HONO flux, hindering a comprehensive understanding of its emission mechanisms. In this study, a dual open-top chambers system combined with a long path absorption photometer (LOPAP) was employed to measure HONO flux from paddy fields in the Pearl River Delta area (PRD), showing good reproducibility and effectivity to mitigate greenhouse effects. The average HONO flux was 0.77 ± 0.72 ng N m<sup>−2</sup> s<sup>−1</sup>, displaying a diurnal pattern of higher fluxes during the day and lower fluxes at night, similar to previous flux observations. A strong linear correlation between the HONO flux with the product of NO<sub>2</sub> and solar radiation (R<sup>2</sup> = 0.90) suggests that surface reactions involving NO<sub>2</sub> and sunlight may dominate HONO production from the paddy fields, surpassing microbial activity within the soil. Given the diversity of field environments, more field observations are needed for assessing emission rates of HONO and understanding underlying mechanisms.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"338 ","pages":"Article 120853"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface exchange of HONO over paddy fields in the Pearl River Delta, China\",\"authors\":\"Baobin Han , Yingjie Zhang , Wenda Yang , Yihang Yu , Ke Tang , Yujie Tian , Yucheng Gong , Bingna Chen , Peng Cheng\",\"doi\":\"10.1016/j.atmosenv.2024.120853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil can release HONO, affecting atmospheric oxidation and tropospheric chemistry processes through the production of hydroxyl radicals (OH) and nitric oxide (NO) via photolysis. However, there is limited field observation of HONO flux, hindering a comprehensive understanding of its emission mechanisms. In this study, a dual open-top chambers system combined with a long path absorption photometer (LOPAP) was employed to measure HONO flux from paddy fields in the Pearl River Delta area (PRD), showing good reproducibility and effectivity to mitigate greenhouse effects. The average HONO flux was 0.77 ± 0.72 ng N m<sup>−2</sup> s<sup>−1</sup>, displaying a diurnal pattern of higher fluxes during the day and lower fluxes at night, similar to previous flux observations. A strong linear correlation between the HONO flux with the product of NO<sub>2</sub> and solar radiation (R<sup>2</sup> = 0.90) suggests that surface reactions involving NO<sub>2</sub> and sunlight may dominate HONO production from the paddy fields, surpassing microbial activity within the soil. Given the diversity of field environments, more field observations are needed for assessing emission rates of HONO and understanding underlying mechanisms.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"338 \",\"pages\":\"Article 120853\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005284\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005284","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Surface exchange of HONO over paddy fields in the Pearl River Delta, China
Soil can release HONO, affecting atmospheric oxidation and tropospheric chemistry processes through the production of hydroxyl radicals (OH) and nitric oxide (NO) via photolysis. However, there is limited field observation of HONO flux, hindering a comprehensive understanding of its emission mechanisms. In this study, a dual open-top chambers system combined with a long path absorption photometer (LOPAP) was employed to measure HONO flux from paddy fields in the Pearl River Delta area (PRD), showing good reproducibility and effectivity to mitigate greenhouse effects. The average HONO flux was 0.77 ± 0.72 ng N m−2 s−1, displaying a diurnal pattern of higher fluxes during the day and lower fluxes at night, similar to previous flux observations. A strong linear correlation between the HONO flux with the product of NO2 and solar radiation (R2 = 0.90) suggests that surface reactions involving NO2 and sunlight may dominate HONO production from the paddy fields, surpassing microbial activity within the soil. Given the diversity of field environments, more field observations are needed for assessing emission rates of HONO and understanding underlying mechanisms.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.