用于非线性平流扩散问题中显式源估计的积分变换

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
André J.P. de Oliveira , Diego C. Knupp , Luiz A.S. Abreu
{"title":"用于非线性平流扩散问题中显式源估计的积分变换","authors":"André J.P. de Oliveira ,&nbsp;Diego C. Knupp ,&nbsp;Luiz A.S. Abreu","doi":"10.1016/j.amc.2024.129092","DOIUrl":null,"url":null,"abstract":"<div><div>In many engineering problems non-linear mathematical models are needed to accurately describe the physical phenomena involved. In such cases, the inverse problems related to those models bring additional challenges. In this scenario, this work provides a novel general regularized methodology based on integral transforms for obtaining explicit solutions to inverse problems related to source term estimation in non-linear advection-diffusion models. Numerical examples demonstrate the application of the methodology for some cases of the one- and two-dimensional versions of the non-linear Burgers' equation. An uncertainty analysis for the proposed inverse problem is also conducted using the Monte Carlo Method, in order to illustrate the reliability of the estimates. The results reveal accurate estimates for different functional forms of the sought source term and varying noise levels, for both diffusion-dominated and advection-dominated scenarios.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integral transforms for explicit source estimation in non-linear advection-diffusion problems\",\"authors\":\"André J.P. de Oliveira ,&nbsp;Diego C. Knupp ,&nbsp;Luiz A.S. Abreu\",\"doi\":\"10.1016/j.amc.2024.129092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In many engineering problems non-linear mathematical models are needed to accurately describe the physical phenomena involved. In such cases, the inverse problems related to those models bring additional challenges. In this scenario, this work provides a novel general regularized methodology based on integral transforms for obtaining explicit solutions to inverse problems related to source term estimation in non-linear advection-diffusion models. Numerical examples demonstrate the application of the methodology for some cases of the one- and two-dimensional versions of the non-linear Burgers' equation. An uncertainty analysis for the proposed inverse problem is also conducted using the Monte Carlo Method, in order to illustrate the reliability of the estimates. The results reveal accurate estimates for different functional forms of the sought source term and varying noise levels, for both diffusion-dominated and advection-dominated scenarios.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005538\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005538","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

许多工程问题都需要非线性数学模型来准确描述相关的物理现象。在这种情况下,与这些模型相关的逆问题带来了额外的挑战。在这种情况下,本研究提供了一种基于积分变换的新型通用正则化方法,用于获得与非线性平流扩散模型中源项估计相关的逆问题的显式解。数值示例演示了该方法在非线性布尔格斯方程一维和二维版本的某些情况下的应用。为了说明估计值的可靠性,还使用蒙特卡罗方法对提出的逆问题进行了不确定性分析。结果表明,在以扩散为主和以平流为主的情况下,对于所寻求的源项的不同函数形式和不同的噪声水平,都能获得准确的估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integral transforms for explicit source estimation in non-linear advection-diffusion problems
In many engineering problems non-linear mathematical models are needed to accurately describe the physical phenomena involved. In such cases, the inverse problems related to those models bring additional challenges. In this scenario, this work provides a novel general regularized methodology based on integral transforms for obtaining explicit solutions to inverse problems related to source term estimation in non-linear advection-diffusion models. Numerical examples demonstrate the application of the methodology for some cases of the one- and two-dimensional versions of the non-linear Burgers' equation. An uncertainty analysis for the proposed inverse problem is also conducted using the Monte Carlo Method, in order to illustrate the reliability of the estimates. The results reveal accurate estimates for different functional forms of the sought source term and varying noise levels, for both diffusion-dominated and advection-dominated scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信