车轮网络的组件连通性

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Guozhen Zhang , Xin Liu , Dajin Wang
{"title":"车轮网络的组件连通性","authors":"Guozhen Zhang ,&nbsp;Xin Liu ,&nbsp;Dajin Wang","doi":"10.1016/j.amc.2024.129096","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>r</em>-component connectivity <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a noncomplete graph <em>G</em> is the size of a minimum set of vertices, whose deletion disconnects <em>G</em> such that the remaining graph has at least <em>r</em> components. When <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is reduced to the classic notion of connectivity <span><math><mi>κ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. So <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is a generalization of <span><math><mi>κ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and is therefore a more general and more precise measurement for the reliability of large interconnection networks. The <em>m</em>-dimensional wheel network <span><math><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> was first proposed by Shi and Lu in 2008 as a potential model for the interconnection network <span><span>[19]</span></span>, and has been getting increasing attention recently. It belongs to the category of Cayley graphs, and possesses some properties desirable for interconnection networks. In this paper, we determine the <em>r</em>-component connectivity of the wheel network for <span><math><mi>r</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>. We prove that <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>4</mn><mi>m</mi><mo>−</mo><mn>7</mn></math></span> for <span><math><mi>m</mi><mo>≥</mo><mn>5</mn></math></span>, <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>6</mn><mi>m</mi><mo>−</mo><mn>13</mn></math></span> and <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>(</mo><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>8</mn><mi>m</mi><mo>−</mo><mn>20</mn></math></span> for <span><math><mi>m</mi><mo>≥</mo><mn>6</mn></math></span>.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Component connectivity of wheel networks\",\"authors\":\"Guozhen Zhang ,&nbsp;Xin Liu ,&nbsp;Dajin Wang\",\"doi\":\"10.1016/j.amc.2024.129096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <em>r</em>-component connectivity <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> of a noncomplete graph <em>G</em> is the size of a minimum set of vertices, whose deletion disconnects <em>G</em> such that the remaining graph has at least <em>r</em> components. When <span><math><mi>r</mi><mo>=</mo><mn>2</mn></math></span>, <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is reduced to the classic notion of connectivity <span><math><mi>κ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. So <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is a generalization of <span><math><mi>κ</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, and is therefore a more general and more precise measurement for the reliability of large interconnection networks. The <em>m</em>-dimensional wheel network <span><math><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> was first proposed by Shi and Lu in 2008 as a potential model for the interconnection network <span><span>[19]</span></span>, and has been getting increasing attention recently. It belongs to the category of Cayley graphs, and possesses some properties desirable for interconnection networks. In this paper, we determine the <em>r</em>-component connectivity of the wheel network for <span><math><mi>r</mi><mo>=</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn></math></span>. We prove that <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>(</mo><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>4</mn><mi>m</mi><mo>−</mo><mn>7</mn></math></span> for <span><math><mi>m</mi><mo>≥</mo><mn>5</mn></math></span>, <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>(</mo><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>6</mn><mi>m</mi><mo>−</mo><mn>13</mn></math></span> and <span><math><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>(</mo><mi>C</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>)</mo><mo>=</mo><mn>8</mn><mi>m</mi><mo>−</mo><mn>20</mn></math></span> for <span><math><mi>m</mi><mo>≥</mo><mn>6</mn></math></span>.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005575\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005575","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

非完整图 G 的 r 分量连通性 cκr(G)是最小顶点集的大小,删除这些顶点集可以断开 G 的连接,使剩余的图至少有 r 个分量。当 r=2 时,cκr(G) 简化为连通性 κ(G) 的经典概念。因此,cκr(G) 是对κ(G) 的广义概括,因而是对大型互连网络可靠性的更广义、更精确的测量。m 维轮状网络 CWm 由 Shi 和 Lu 于 2008 年首次提出,是互联网络的潜在模型[19],近来受到越来越多的关注。它属于 Cayley 图的范畴,具有互连网络所需的一些特性。本文确定了 r=3,4,5 时车轮网络的 r 分量连通性。我们证明,当 m≥5 时,cκ3(CWm)=4m-7;当 m≥6 时,cκ4(CWm)=6m-13;当 m≥6 时,cκ5(CWm)=8m-20。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Component connectivity of wheel networks
The r-component connectivity cκr(G) of a noncomplete graph G is the size of a minimum set of vertices, whose deletion disconnects G such that the remaining graph has at least r components. When r=2, cκr(G) is reduced to the classic notion of connectivity κ(G). So cκr(G) is a generalization of κ(G), and is therefore a more general and more precise measurement for the reliability of large interconnection networks. The m-dimensional wheel network CWm was first proposed by Shi and Lu in 2008 as a potential model for the interconnection network [19], and has been getting increasing attention recently. It belongs to the category of Cayley graphs, and possesses some properties desirable for interconnection networks. In this paper, we determine the r-component connectivity of the wheel network for r=3,4,5. We prove that cκ3(CWm)=4m7 for m5, cκ4(CWm)=6m13 and cκ5(CWm)=8m20 for m6.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信