两类环状多臂链的距离(无符号)拉普拉斯谱和能量

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yonghong Zhang , Ligong Wang
{"title":"两类环状多臂链的距离(无符号)拉普拉斯谱和能量","authors":"Yonghong Zhang ,&nbsp;Ligong Wang","doi":"10.1016/j.amc.2024.129099","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the distance matrix and the diagonal matrix of vertex transmissions of a graph <em>G</em>, respectively. The distance Laplacian matrix and the distance signless Laplacian matrix of <em>G</em> are defined as <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>L</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>Q</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, respectively. In this paper, we consider the distance Laplacian spectra and the distance signless Laplacian spectra of the linear cyclic polyomino chain <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the Möbius cyclic polyomino chain <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. By utilizing the properties of circulant matrices, we give the characteristic polynomials and the eigenvalues for the distance Laplacian matrices and the distance signless Laplacian matrices of the graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. Furthermore, we provide the exactly values of the distance Laplacian energy and the distance signless Laplacian energy of the graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the upper bounds on the distance Laplacian energy and the distance signless Laplacian energy of the graph <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance (signless) Laplacian spectra and energies of two classes of cyclic polyomino chains\",\"authors\":\"Yonghong Zhang ,&nbsp;Ligong Wang\",\"doi\":\"10.1016/j.amc.2024.129099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the distance matrix and the diagonal matrix of vertex transmissions of a graph <em>G</em>, respectively. The distance Laplacian matrix and the distance signless Laplacian matrix of <em>G</em> are defined as <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>L</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>Q</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, respectively. In this paper, we consider the distance Laplacian spectra and the distance signless Laplacian spectra of the linear cyclic polyomino chain <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the Möbius cyclic polyomino chain <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. By utilizing the properties of circulant matrices, we give the characteristic polynomials and the eigenvalues for the distance Laplacian matrices and the distance signless Laplacian matrices of the graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. Furthermore, we provide the exactly values of the distance Laplacian energy and the distance signless Laplacian energy of the graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the upper bounds on the distance Laplacian energy and the distance signless Laplacian energy of the graph <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005605\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005605","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

设 D(G) 和 Tr(G) 分别为图 G 的距离矩阵和顶点传输对角矩阵。G 的距离拉普拉斯矩阵和距离无符号拉普拉斯矩阵分别定义为 DL(G)=Tr(G)-D(G) 和 DQ(G)=Tr(G)+D(G) 。本文考虑线性循环多角体链 Fn 和莫比乌斯循环多角体链 Mn 的距离拉普拉斯谱和距离无符号拉普拉斯谱。利用循环矩阵的性质,我们分别给出了图形 Fn 和 Mn 的距离拉普拉斯矩阵和无距离拉普拉斯矩阵的特征多项式和特征值。此外,我们还分别给出了图 Fn 的距离拉普拉奇能量和无符号距离拉普拉奇能量的精确值,以及图 Mn 的距离拉普拉奇能量和无符号距离拉普拉奇能量的上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distance (signless) Laplacian spectra and energies of two classes of cyclic polyomino chains
Let D(G) and Tr(G) be the distance matrix and the diagonal matrix of vertex transmissions of a graph G, respectively. The distance Laplacian matrix and the distance signless Laplacian matrix of G are defined as DL(G)=Tr(G)D(G) and DQ(G)=Tr(G)+D(G), respectively. In this paper, we consider the distance Laplacian spectra and the distance signless Laplacian spectra of the linear cyclic polyomino chain Fn and the Möbius cyclic polyomino chain Mn. By utilizing the properties of circulant matrices, we give the characteristic polynomials and the eigenvalues for the distance Laplacian matrices and the distance signless Laplacian matrices of the graphs Fn and Mn, respectively. Furthermore, we provide the exactly values of the distance Laplacian energy and the distance signless Laplacian energy of the graph Fn, and the upper bounds on the distance Laplacian energy and the distance signless Laplacian energy of the graph Mn, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信