{"title":"两类环状多臂链的距离(无符号)拉普拉斯谱和能量","authors":"Yonghong Zhang , Ligong Wang","doi":"10.1016/j.amc.2024.129099","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the distance matrix and the diagonal matrix of vertex transmissions of a graph <em>G</em>, respectively. The distance Laplacian matrix and the distance signless Laplacian matrix of <em>G</em> are defined as <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>L</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>Q</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, respectively. In this paper, we consider the distance Laplacian spectra and the distance signless Laplacian spectra of the linear cyclic polyomino chain <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the Möbius cyclic polyomino chain <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. By utilizing the properties of circulant matrices, we give the characteristic polynomials and the eigenvalues for the distance Laplacian matrices and the distance signless Laplacian matrices of the graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. Furthermore, we provide the exactly values of the distance Laplacian energy and the distance signless Laplacian energy of the graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the upper bounds on the distance Laplacian energy and the distance signless Laplacian energy of the graph <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively.</div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distance (signless) Laplacian spectra and energies of two classes of cyclic polyomino chains\",\"authors\":\"Yonghong Zhang , Ligong Wang\",\"doi\":\"10.1016/j.amc.2024.129099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the distance matrix and the diagonal matrix of vertex transmissions of a graph <em>G</em>, respectively. The distance Laplacian matrix and the distance signless Laplacian matrix of <em>G</em> are defined as <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>L</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>−</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>Q</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>r</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>+</mo><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, respectively. In this paper, we consider the distance Laplacian spectra and the distance signless Laplacian spectra of the linear cyclic polyomino chain <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and the Möbius cyclic polyomino chain <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. By utilizing the properties of circulant matrices, we give the characteristic polynomials and the eigenvalues for the distance Laplacian matrices and the distance signless Laplacian matrices of the graphs <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively. Furthermore, we provide the exactly values of the distance Laplacian energy and the distance signless Laplacian energy of the graph <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and the upper bounds on the distance Laplacian energy and the distance signless Laplacian energy of the graph <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, respectively.</div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005605\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005605","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Distance (signless) Laplacian spectra and energies of two classes of cyclic polyomino chains
Let and be the distance matrix and the diagonal matrix of vertex transmissions of a graph G, respectively. The distance Laplacian matrix and the distance signless Laplacian matrix of G are defined as and , respectively. In this paper, we consider the distance Laplacian spectra and the distance signless Laplacian spectra of the linear cyclic polyomino chain and the Möbius cyclic polyomino chain . By utilizing the properties of circulant matrices, we give the characteristic polynomials and the eigenvalues for the distance Laplacian matrices and the distance signless Laplacian matrices of the graphs and , respectively. Furthermore, we provide the exactly values of the distance Laplacian energy and the distance signless Laplacian energy of the graph , and the upper bounds on the distance Laplacian energy and the distance signless Laplacian energy of the graph , respectively.