直径至多为 4 的非谱系等能树

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Fenjin Liu , Ke Su , Wei Wang , Hao Zhang
{"title":"直径至多为 4 的非谱系等能树","authors":"Fenjin Liu ,&nbsp;Ke Su ,&nbsp;Wei Wang ,&nbsp;Hao Zhang","doi":"10.1016/j.amc.2024.129104","DOIUrl":null,"url":null,"abstract":"<div><div>No general method differing from computer search has been discovered for finding noncospectral equienergetic trees. We first utilize techniques of spectral graph theory and Diophantine Equation to analyze the energy of two families of short-diameter trees. Seven infinite families noncospectral equienergetic trees are obtained of which six pairs of them have equal number vertices. This contributes to an open problem posed by Li, Shi and Gutman for constructing noncospectral equienergetic trees.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"487 ","pages":"Article 129104"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-cospectral equienergetic trees of diameter at most four\",\"authors\":\"Fenjin Liu ,&nbsp;Ke Su ,&nbsp;Wei Wang ,&nbsp;Hao Zhang\",\"doi\":\"10.1016/j.amc.2024.129104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>No general method differing from computer search has been discovered for finding noncospectral equienergetic trees. We first utilize techniques of spectral graph theory and Diophantine Equation to analyze the energy of two families of short-diameter trees. Seven infinite families noncospectral equienergetic trees are obtained of which six pairs of them have equal number vertices. This contributes to an open problem posed by Li, Shi and Gutman for constructing noncospectral equienergetic trees.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"487 \",\"pages\":\"Article 129104\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324005654\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324005654","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在寻找非谱等能树方面,还没有发现不同于计算机搜索的通用方法。我们首先利用谱图理论和二重方程技术分析了两个短径树族的能量。我们得到了七个无穷族非谱等能树,其中六对顶点数相等。这有助于解决 Li、Shi 和 Gutman 提出的构建非谱等能树的未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-cospectral equienergetic trees of diameter at most four
No general method differing from computer search has been discovered for finding noncospectral equienergetic trees. We first utilize techniques of spectral graph theory and Diophantine Equation to analyze the energy of two families of short-diameter trees. Seven infinite families noncospectral equienergetic trees are obtained of which six pairs of them have equal number vertices. This contributes to an open problem posed by Li, Shi and Gutman for constructing noncospectral equienergetic trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信