{"title":"氧化亚铜的表面化学","authors":"","doi":"10.1016/j.susc.2024.122622","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical and electronic properties of copper combined with its large natural abundance lend this material to impact a wide range of technological applications, including heterogeneous catalysis. The reactivity of copper in its Cu<sup>1+</sup>oxidation state makes this specific configuration relevant in various chemical reactions, but the facile redox properties of copper make the isolation of individual states for fundamental studies difficult. Here we review three Cu<sub>2</sub>O model systems used to study the interaction of Cu<sup>1+</sup> with small molecules making use of surface science techniques: Cu<sub>2</sub>O/Cu(111), thin polycrystalline Cu<sub>2</sub>O films on Cu foil, and bulk Cu<sub>2</sub>O crystals. Advantages and disadvantages of each system are discussed and exemplified through case studies of chemical adsorption and reactivity studies.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The surface chemistry of cuprous oxide\",\"authors\":\"\",\"doi\":\"10.1016/j.susc.2024.122622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The chemical and electronic properties of copper combined with its large natural abundance lend this material to impact a wide range of technological applications, including heterogeneous catalysis. The reactivity of copper in its Cu<sup>1+</sup>oxidation state makes this specific configuration relevant in various chemical reactions, but the facile redox properties of copper make the isolation of individual states for fundamental studies difficult. Here we review three Cu<sub>2</sub>O model systems used to study the interaction of Cu<sup>1+</sup> with small molecules making use of surface science techniques: Cu<sub>2</sub>O/Cu(111), thin polycrystalline Cu<sub>2</sub>O films on Cu foil, and bulk Cu<sub>2</sub>O crystals. Advantages and disadvantages of each system are discussed and exemplified through case studies of chemical adsorption and reactivity studies.</div></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001730\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001730","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The chemical and electronic properties of copper combined with its large natural abundance lend this material to impact a wide range of technological applications, including heterogeneous catalysis. The reactivity of copper in its Cu1+oxidation state makes this specific configuration relevant in various chemical reactions, but the facile redox properties of copper make the isolation of individual states for fundamental studies difficult. Here we review three Cu2O model systems used to study the interaction of Cu1+ with small molecules making use of surface science techniques: Cu2O/Cu(111), thin polycrystalline Cu2O films on Cu foil, and bulk Cu2O crystals. Advantages and disadvantages of each system are discussed and exemplified through case studies of chemical adsorption and reactivity studies.
期刊介绍:
Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to:
• model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions
• nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena
• reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization
• phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization
• surface reactivity for environmental protection and pollution remediation
• interactions at surfaces of soft matter, including polymers and biomaterials.
Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.