{"title":"天冬氨酸和谷氨酸的低分子量衍生物(L-Asp 和 L-Glu)获得的 pH 依赖性水凝胶","authors":"","doi":"10.1016/j.crbiot.2024.100257","DOIUrl":null,"url":null,"abstract":"<div><div>We report here the synthesis of two new anionic gemini surfactants, derivatives of L-Asp and L-Glu with analogous structure and their applications as low molecular weight gelators. Conditions for formation of pH-dependent hydrogels and their stability are presented and discussed. Although both compounds possess very close molecular structures, only one of them – the derivative of L-Asp, can form stable hydrogels. Loading of such a hydrogel with silver nanoparticles and the conditions of their release are also studied and described. Different methods to analyze molecular and supramolecular structures, such as NMR, FTIR, UV–VIS and SEM, are used to characterize the compounds and also to understand and follow the processes of loading and release of silver nanoparticles. It was found that a stable hydrogel can be formed only in acidic solution, while release can happen only at basic condition – over pH ≥ 9. The results obtained show that such pH-dependent hydrogels can be used for slowly and gradually supply of active compounds at necessity, expressed through changing the pH of the living tissue.</div></div>","PeriodicalId":52676,"journal":{"name":"Current Research in Biotechnology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-dependent hydrogels obtained by low molecular weight derivatives of aspartic acid and glutamic acid (L-Asp and L-Glu)\",\"authors\":\"\",\"doi\":\"10.1016/j.crbiot.2024.100257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We report here the synthesis of two new anionic gemini surfactants, derivatives of L-Asp and L-Glu with analogous structure and their applications as low molecular weight gelators. Conditions for formation of pH-dependent hydrogels and their stability are presented and discussed. Although both compounds possess very close molecular structures, only one of them – the derivative of L-Asp, can form stable hydrogels. Loading of such a hydrogel with silver nanoparticles and the conditions of their release are also studied and described. Different methods to analyze molecular and supramolecular structures, such as NMR, FTIR, UV–VIS and SEM, are used to characterize the compounds and also to understand and follow the processes of loading and release of silver nanoparticles. It was found that a stable hydrogel can be formed only in acidic solution, while release can happen only at basic condition – over pH ≥ 9. The results obtained show that such pH-dependent hydrogels can be used for slowly and gradually supply of active compounds at necessity, expressed through changing the pH of the living tissue.</div></div>\",\"PeriodicalId\":52676,\"journal\":{\"name\":\"Current Research in Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590262824000832\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590262824000832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
pH-dependent hydrogels obtained by low molecular weight derivatives of aspartic acid and glutamic acid (L-Asp and L-Glu)
We report here the synthesis of two new anionic gemini surfactants, derivatives of L-Asp and L-Glu with analogous structure and their applications as low molecular weight gelators. Conditions for formation of pH-dependent hydrogels and their stability are presented and discussed. Although both compounds possess very close molecular structures, only one of them – the derivative of L-Asp, can form stable hydrogels. Loading of such a hydrogel with silver nanoparticles and the conditions of their release are also studied and described. Different methods to analyze molecular and supramolecular structures, such as NMR, FTIR, UV–VIS and SEM, are used to characterize the compounds and also to understand and follow the processes of loading and release of silver nanoparticles. It was found that a stable hydrogel can be formed only in acidic solution, while release can happen only at basic condition – over pH ≥ 9. The results obtained show that such pH-dependent hydrogels can be used for slowly and gradually supply of active compounds at necessity, expressed through changing the pH of the living tissue.
期刊介绍:
Current Research in Biotechnology (CRBIOT) is a new primary research, gold open access journal from Elsevier. CRBIOT publishes original papers, reviews, and short communications (including viewpoints and perspectives) resulting from research in biotechnology and biotech-associated disciplines.
Current Research in Biotechnology is a peer-reviewed gold open access (OA) journal and upon acceptance all articles are permanently and freely available. It is a companion to the highly regarded review journal Current Opinion in Biotechnology (2018 CiteScore 8.450) and is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists' workflow.