{"title":"多项式超群的对偶空间与哈氏度量","authors":"Stefan Kahler , Ryszard Szwarc","doi":"10.1016/j.jat.2024.106099","DOIUrl":null,"url":null,"abstract":"<div><div>Many symmetric orthogonal polynomials <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span> induce a hypergroup structure on <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The Haar measure is the counting measure weighted with <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≔</mo><mn>1</mn><mo>/</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><mspace></mspace><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span>, where <span><math><mi>μ</mi></math></span> denotes the orthogonalization measure. We observed that many naturally occurring examples satisfy the remarkable property <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. We give sufficient criteria and particularly show that <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> if the (Hermitian) dual space <span><math><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>̂</mo></mrow></mover></math></span> equals the full interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, which is fulfilled by an abundance of examples. We also study the role of nonnegative linearization of products (and of the resulting harmonic and functional analysis). Moreover, we construct two example types with <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo><</mo><mn>2</mn></mrow></math></span>. To our knowledge, these are the first such examples. The first type is based on Karlin–McGregor polynomials, and <span><math><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>̂</mo></mrow></mover></math></span> consists of two intervals and can be chosen “maximal” in some sense; <span><math><mi>h</mi></math></span> is of quadratic growth. The second type relies on hypergroups of strong compact type; <span><math><mi>h</mi></math></span> grows exponentially, and <span><math><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>̂</mo></mrow></mover></math></span> is discrete.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual spaces vs. Haar measures of polynomial hypergroups\",\"authors\":\"Stefan Kahler , Ryszard Szwarc\",\"doi\":\"10.1016/j.jat.2024.106099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many symmetric orthogonal polynomials <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></msub></math></span> induce a hypergroup structure on <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. The Haar measure is the counting measure weighted with <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≔</mo><mn>1</mn><mo>/</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>R</mi></mrow></msub><mspace></mspace><msubsup><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mspace></mspace><mi>d</mi><mi>μ</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>≥</mo><mn>1</mn></mrow></math></span>, where <span><math><mi>μ</mi></math></span> denotes the orthogonalization measure. We observed that many naturally occurring examples satisfy the remarkable property <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span>. We give sufficient criteria and particularly show that <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mspace></mspace><mrow><mo>(</mo><mi>n</mi><mo>∈</mo><mi>N</mi><mo>)</mo></mrow></mrow></math></span> if the (Hermitian) dual space <span><math><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>̂</mo></mrow></mover></math></span> equals the full interval <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>, which is fulfilled by an abundance of examples. We also study the role of nonnegative linearization of products (and of the resulting harmonic and functional analysis). Moreover, we construct two example types with <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo><</mo><mn>2</mn></mrow></math></span>. To our knowledge, these are the first such examples. The first type is based on Karlin–McGregor polynomials, and <span><math><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>̂</mo></mrow></mover></math></span> consists of two intervals and can be chosen “maximal” in some sense; <span><math><mi>h</mi></math></span> is of quadratic growth. The second type relies on hypergroups of strong compact type; <span><math><mi>h</mi></math></span> grows exponentially, and <span><math><mover><mrow><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow><mrow><mo>̂</mo></mrow></mover></math></span> is discrete.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002190452400087X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002190452400087X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Dual spaces vs. Haar measures of polynomial hypergroups
Many symmetric orthogonal polynomials induce a hypergroup structure on . The Haar measure is the counting measure weighted with , where denotes the orthogonalization measure. We observed that many naturally occurring examples satisfy the remarkable property . We give sufficient criteria and particularly show that if the (Hermitian) dual space equals the full interval , which is fulfilled by an abundance of examples. We also study the role of nonnegative linearization of products (and of the resulting harmonic and functional analysis). Moreover, we construct two example types with . To our knowledge, these are the first such examples. The first type is based on Karlin–McGregor polynomials, and consists of two intervals and can be chosen “maximal” in some sense; is of quadratic growth. The second type relies on hypergroups of strong compact type; grows exponentially, and is discrete.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.