{"title":"模拟闪电回击实验与普通焦耳热和弧热模型应用之间的界面注入能量比较","authors":"Yutong Lin","doi":"10.1016/j.epsr.2024.111034","DOIUrl":null,"url":null,"abstract":"<div><div>A previous study has shown that the thermal damage of the Joule thermal arc heat transfer model is lighter than that of a natural lightning strike. Therefore, this paper focuses on the return stroke current and proposes an improved experimental method of simulated return damage without using arc-inducing wire. Combining the data with the inversion model of injected energy, the energy transfer characteristics of the samples are characterized. Furthermore, a data dimensionality reduction method based on multiple correlation coefficients is used to discuss the impact of the current peak/rise rate/wave tail time on the injected energy discrepancy. The results indicate a positive correlation between the current peak and current rise rate with the injected energy discrepancy. When the tail time exceeds 15 microseconds, the injected energy discrepancy decreases as the tail time increases. The thermal source characteristics of energy transfer during the return stroke process are determined. During the initial phase of the return stroke current, interfacial energy transfer includes contributions from ion enthalpy flux, Joule heating, and electronic enthalpy flux. When the tail time exceeds 15 microseconds, the contribution of ion enthalpy flux to the injected energy diminishes with increasing tail time.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"238 ","pages":"Article 111034"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of interfacial injected energy between simulated lightning return stroke experiment and common Joule heat & Arc heat model application\",\"authors\":\"Yutong Lin\",\"doi\":\"10.1016/j.epsr.2024.111034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A previous study has shown that the thermal damage of the Joule thermal arc heat transfer model is lighter than that of a natural lightning strike. Therefore, this paper focuses on the return stroke current and proposes an improved experimental method of simulated return damage without using arc-inducing wire. Combining the data with the inversion model of injected energy, the energy transfer characteristics of the samples are characterized. Furthermore, a data dimensionality reduction method based on multiple correlation coefficients is used to discuss the impact of the current peak/rise rate/wave tail time on the injected energy discrepancy. The results indicate a positive correlation between the current peak and current rise rate with the injected energy discrepancy. When the tail time exceeds 15 microseconds, the injected energy discrepancy decreases as the tail time increases. The thermal source characteristics of energy transfer during the return stroke process are determined. During the initial phase of the return stroke current, interfacial energy transfer includes contributions from ion enthalpy flux, Joule heating, and electronic enthalpy flux. When the tail time exceeds 15 microseconds, the contribution of ion enthalpy flux to the injected energy diminishes with increasing tail time.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"238 \",\"pages\":\"Article 111034\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779624009209\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624009209","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Comparison of interfacial injected energy between simulated lightning return stroke experiment and common Joule heat & Arc heat model application
A previous study has shown that the thermal damage of the Joule thermal arc heat transfer model is lighter than that of a natural lightning strike. Therefore, this paper focuses on the return stroke current and proposes an improved experimental method of simulated return damage without using arc-inducing wire. Combining the data with the inversion model of injected energy, the energy transfer characteristics of the samples are characterized. Furthermore, a data dimensionality reduction method based on multiple correlation coefficients is used to discuss the impact of the current peak/rise rate/wave tail time on the injected energy discrepancy. The results indicate a positive correlation between the current peak and current rise rate with the injected energy discrepancy. When the tail time exceeds 15 microseconds, the injected energy discrepancy decreases as the tail time increases. The thermal source characteristics of energy transfer during the return stroke process are determined. During the initial phase of the return stroke current, interfacial energy transfer includes contributions from ion enthalpy flux, Joule heating, and electronic enthalpy flux. When the tail time exceeds 15 microseconds, the contribution of ion enthalpy flux to the injected energy diminishes with increasing tail time.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.