Muhammadin Hamid , Indri Dayana , Habib Satria , Muhammad Fadlan Siregar , Martha Rianna , Hadi Wijoyo
{"title":"壳聚糖/CNDs 涂层铜电极表面具有电能应用潜力","authors":"Muhammadin Hamid , Indri Dayana , Habib Satria , Muhammad Fadlan Siregar , Martha Rianna , Hadi Wijoyo","doi":"10.1016/j.sajce.2024.09.013","DOIUrl":null,"url":null,"abstract":"<div><div>Polymers and nanomaterials had been widely applied at electrochemical chemosensor and biosensor. Developing technical energy is still much needed, especially using natural environmental friendly material. Both chitosan of biopolymer and carbon nanodots (CNDs) of nanomaterials are highly studied due to their extraordinary properties. The research focus on chitosan and chitosan/CNDs nanocomposite surface that was applied for electrical energy. Nanocomposite was coated on Cu electrode surface by using electroplating method. The coated electrode was dipped into oil samples. The dipped nanocomposite then was characterized by FTIR, XRD, SEM, and Chemosensor. Nanocomposite structure is still maintain its chemical compound, confirmed by FTIR and XRD, which still maintain amine group; hydroxyl group; and crystalinity of chitosan after CNDs intercoporation. Nanocomposite surface morphology show magnetite particle distribution that spreaded on the surface of electrode for both chitosan and CNDs nanocomposite, which is confirmed by SEM. The free dipping method is based on the sensitive material chitosan/CNDs as a chemosensor; the pressure process on the surface of the chitosan/CNDs sensitive material causes the interaction of metal ions and acid compounds, which involves an iontophoresis process where oil atoms that have been excited in the evaporation process will experience atomic vibrations due to electron transport which then the active groups on the Chemosensor directly absorb and bind metals and acids in oil use a chemisorption process which leads to the transfer of charge from the adsorption particles to the chemosensor surface to fill the holes so that a potential difference occurs in the form of electrical pulses which will then be captured by the Arduino system which will be converted into digital data. This process makes technological energy production in the form of electrical energy faster.</div></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"50 ","pages":"Pages 445-450"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan/CNDs coated Cu electrode surface has an electrical potential for electrical energy application\",\"authors\":\"Muhammadin Hamid , Indri Dayana , Habib Satria , Muhammad Fadlan Siregar , Martha Rianna , Hadi Wijoyo\",\"doi\":\"10.1016/j.sajce.2024.09.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polymers and nanomaterials had been widely applied at electrochemical chemosensor and biosensor. Developing technical energy is still much needed, especially using natural environmental friendly material. Both chitosan of biopolymer and carbon nanodots (CNDs) of nanomaterials are highly studied due to their extraordinary properties. The research focus on chitosan and chitosan/CNDs nanocomposite surface that was applied for electrical energy. Nanocomposite was coated on Cu electrode surface by using electroplating method. The coated electrode was dipped into oil samples. The dipped nanocomposite then was characterized by FTIR, XRD, SEM, and Chemosensor. Nanocomposite structure is still maintain its chemical compound, confirmed by FTIR and XRD, which still maintain amine group; hydroxyl group; and crystalinity of chitosan after CNDs intercoporation. Nanocomposite surface morphology show magnetite particle distribution that spreaded on the surface of electrode for both chitosan and CNDs nanocomposite, which is confirmed by SEM. The free dipping method is based on the sensitive material chitosan/CNDs as a chemosensor; the pressure process on the surface of the chitosan/CNDs sensitive material causes the interaction of metal ions and acid compounds, which involves an iontophoresis process where oil atoms that have been excited in the evaporation process will experience atomic vibrations due to electron transport which then the active groups on the Chemosensor directly absorb and bind metals and acids in oil use a chemisorption process which leads to the transfer of charge from the adsorption particles to the chemosensor surface to fill the holes so that a potential difference occurs in the form of electrical pulses which will then be captured by the Arduino system which will be converted into digital data. This process makes technological energy production in the form of electrical energy faster.</div></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"50 \",\"pages\":\"Pages 445-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S102691852400115X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S102691852400115X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Chitosan/CNDs coated Cu electrode surface has an electrical potential for electrical energy application
Polymers and nanomaterials had been widely applied at electrochemical chemosensor and biosensor. Developing technical energy is still much needed, especially using natural environmental friendly material. Both chitosan of biopolymer and carbon nanodots (CNDs) of nanomaterials are highly studied due to their extraordinary properties. The research focus on chitosan and chitosan/CNDs nanocomposite surface that was applied for electrical energy. Nanocomposite was coated on Cu electrode surface by using electroplating method. The coated electrode was dipped into oil samples. The dipped nanocomposite then was characterized by FTIR, XRD, SEM, and Chemosensor. Nanocomposite structure is still maintain its chemical compound, confirmed by FTIR and XRD, which still maintain amine group; hydroxyl group; and crystalinity of chitosan after CNDs intercoporation. Nanocomposite surface morphology show magnetite particle distribution that spreaded on the surface of electrode for both chitosan and CNDs nanocomposite, which is confirmed by SEM. The free dipping method is based on the sensitive material chitosan/CNDs as a chemosensor; the pressure process on the surface of the chitosan/CNDs sensitive material causes the interaction of metal ions and acid compounds, which involves an iontophoresis process where oil atoms that have been excited in the evaporation process will experience atomic vibrations due to electron transport which then the active groups on the Chemosensor directly absorb and bind metals and acids in oil use a chemisorption process which leads to the transfer of charge from the adsorption particles to the chemosensor surface to fill the holes so that a potential difference occurs in the form of electrical pulses which will then be captured by the Arduino system which will be converted into digital data. This process makes technological energy production in the form of electrical energy faster.
期刊介绍:
The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.