{"title":"论经典和量子可积分系统的一类新的非动力学 ABCD 矩阵","authors":"T. Skrypnyk","doi":"10.1016/j.nuclphysb.2024.116685","DOIUrl":null,"url":null,"abstract":"<div><div>We consider classical and quantum non-dynamical quadratic <span><math><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></math></span> Lax algebras with classical and quantum <span><math><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>⊗</mo><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-valued <span><math><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></math></span>-tensors satisfying a set of quadratic non-dynamical Yang-Baxter-type equations generalizing those of Fredel and Maillet <span><span>[1]</span></span>. We establish a relation of some of these equations with the so-called “semi-dynamical” Yang-Baxter equations of <span><span>[2]</span></span>. We show that the linearization of the corresponding quadratic structures lead to linear tensor structures with the classical <span><math><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>⊗</mo><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-valued <em>r</em>-matrices satisfying usual “permuted” classical Yang-Baxter equations <span><span>[1]</span></span>, <span><span>[3]</span></span>, <span><span>[4]</span></span>, <span><span>[5]</span></span>. We consider example of our construction associated with the deformed <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-graded <em>r</em>-matrix of <span><span>[9]</span></span>, <span><span>[10]</span></span>, <span><span>[11]</span></span> and explicitly construct the corresponding <span><math><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></math></span>-tensors — both classical and quantum. Small <em>n</em> examples are also considered in some details.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1008 ","pages":"Article 116685"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a new class of non-dynamical ABCD algebras for classical and quantum integrable systems\",\"authors\":\"T. Skrypnyk\",\"doi\":\"10.1016/j.nuclphysb.2024.116685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider classical and quantum non-dynamical quadratic <span><math><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></math></span> Lax algebras with classical and quantum <span><math><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>⊗</mo><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-valued <span><math><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></math></span>-tensors satisfying a set of quadratic non-dynamical Yang-Baxter-type equations generalizing those of Fredel and Maillet <span><span>[1]</span></span>. We establish a relation of some of these equations with the so-called “semi-dynamical” Yang-Baxter equations of <span><span>[2]</span></span>. We show that the linearization of the corresponding quadratic structures lead to linear tensor structures with the classical <span><math><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>⊗</mo><mi>g</mi><mi>l</mi><mo>(</mo><mi>n</mi><mo>)</mo></math></span>-valued <em>r</em>-matrices satisfying usual “permuted” classical Yang-Baxter equations <span><span>[1]</span></span>, <span><span>[3]</span></span>, <span><span>[4]</span></span>, <span><span>[5]</span></span>. We consider example of our construction associated with the deformed <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>-graded <em>r</em>-matrix of <span><span>[9]</span></span>, <span><span>[10]</span></span>, <span><span>[11]</span></span> and explicitly construct the corresponding <span><math><mi>a</mi><mi>b</mi><mi>c</mi><mi>d</mi></math></span>-tensors — both classical and quantum. Small <em>n</em> examples are also considered in some details.</div></div>\",\"PeriodicalId\":54712,\"journal\":{\"name\":\"Nuclear Physics B\",\"volume\":\"1008 \",\"pages\":\"Article 116685\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0550321324002517\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002517","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
On a new class of non-dynamical ABCD algebras for classical and quantum integrable systems
We consider classical and quantum non-dynamical quadratic Lax algebras with classical and quantum -valued -tensors satisfying a set of quadratic non-dynamical Yang-Baxter-type equations generalizing those of Fredel and Maillet [1]. We establish a relation of some of these equations with the so-called “semi-dynamical” Yang-Baxter equations of [2]. We show that the linearization of the corresponding quadratic structures lead to linear tensor structures with the classical -valued r-matrices satisfying usual “permuted” classical Yang-Baxter equations [1], [3], [4], [5]. We consider example of our construction associated with the deformed -graded r-matrix of [9], [10], [11] and explicitly construct the corresponding -tensors — both classical and quantum. Small n examples are also considered in some details.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.