{"title":"壳管式 PCM 储能装置的散热特性和能耗研究","authors":"","doi":"10.1016/j.csite.2024.105274","DOIUrl":null,"url":null,"abstract":"<div><div>Shell-tube PCM energy storage units are used in cold storage devices, the heat removal process is a critical factor influencing their performance. This study investigates the effects of cooling water temperature, water velocity, and tube shape on the heat removal process of shell-tube PCM energy storage units through both experiments and numerical simulations. The energy performance was analyzed based on the energy consumption of the chiller and water pump. The results show that the spiral tube has the highest heat removal rate and the greatest resistance loss, but also the lowest chiller energy consumption. Additionally, the study found that for every 1 °C increase in cooling water temperature, the heat removal time increases by approximately 13.9 %, the energy efficiency ratio (EER) decreases by about 9.5 %, and the chiller energy consumption decreases by about 5 %. Higher cooling water velocity can improve the heat removal rate but reduces the EER. Beyond tube shape, both the cooling water temperature and velocity affect the PCM liquid fraction distribution inside the shell, thereby influencing the energy consumption during the sensible heat removal of solid-state PCM. The EER of the sensible heat removal process for solid-state PCM is lower compared to that of liquid and hybrid states.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of heat removal characteristics and energy consumption of shell-tube PCM energy storage units\",\"authors\":\"\",\"doi\":\"10.1016/j.csite.2024.105274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Shell-tube PCM energy storage units are used in cold storage devices, the heat removal process is a critical factor influencing their performance. This study investigates the effects of cooling water temperature, water velocity, and tube shape on the heat removal process of shell-tube PCM energy storage units through both experiments and numerical simulations. The energy performance was analyzed based on the energy consumption of the chiller and water pump. The results show that the spiral tube has the highest heat removal rate and the greatest resistance loss, but also the lowest chiller energy consumption. Additionally, the study found that for every 1 °C increase in cooling water temperature, the heat removal time increases by approximately 13.9 %, the energy efficiency ratio (EER) decreases by about 9.5 %, and the chiller energy consumption decreases by about 5 %. Higher cooling water velocity can improve the heat removal rate but reduces the EER. Beyond tube shape, both the cooling water temperature and velocity affect the PCM liquid fraction distribution inside the shell, thereby influencing the energy consumption during the sensible heat removal of solid-state PCM. The EER of the sensible heat removal process for solid-state PCM is lower compared to that of liquid and hybrid states.</div></div>\",\"PeriodicalId\":9658,\"journal\":{\"name\":\"Case Studies in Thermal Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Case Studies in Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214157X24013054\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24013054","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
Study of heat removal characteristics and energy consumption of shell-tube PCM energy storage units
Shell-tube PCM energy storage units are used in cold storage devices, the heat removal process is a critical factor influencing their performance. This study investigates the effects of cooling water temperature, water velocity, and tube shape on the heat removal process of shell-tube PCM energy storage units through both experiments and numerical simulations. The energy performance was analyzed based on the energy consumption of the chiller and water pump. The results show that the spiral tube has the highest heat removal rate and the greatest resistance loss, but also the lowest chiller energy consumption. Additionally, the study found that for every 1 °C increase in cooling water temperature, the heat removal time increases by approximately 13.9 %, the energy efficiency ratio (EER) decreases by about 9.5 %, and the chiller energy consumption decreases by about 5 %. Higher cooling water velocity can improve the heat removal rate but reduces the EER. Beyond tube shape, both the cooling water temperature and velocity affect the PCM liquid fraction distribution inside the shell, thereby influencing the energy consumption during the sensible heat removal of solid-state PCM. The EER of the sensible heat removal process for solid-state PCM is lower compared to that of liquid and hybrid states.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.