Yuxi Liu , Yuexi Yang , Xiao Zhou , Yang Liu , Q.H. Wu
{"title":"基于 DMD 的在线卡尔曼滤波器,用于 MMC-HVDC 输电系统的电流传感器容错控制","authors":"Yuxi Liu , Yuexi Yang , Xiao Zhou , Yang Liu , Q.H. Wu","doi":"10.1016/j.epsr.2024.111144","DOIUrl":null,"url":null,"abstract":"<div><div>With the growing application of modular multilevel converter based high-voltage direct current transmission (MMC-HVDC), the sensor fault-tolerant capability in modular multilevel converters has become critical. This paper aims to boost the sensor fault-tolerant performance of the MMC-HVDC systems using advanced data-driven techniques. A novel online dynamic mode decomposition based Kalman filter (ODMDKF) is designed for fault detection and control reconfiguration. Besides, a modified dual-check fault detection module based on local outlier factor algorithm is proposed to reduce false alarm rate. Simulation studies are conducted on a modified IEEE 9-bus system with MMC-HVDC transmission lines. The results indicate that the proposed sensor fault-tolerant control method can ensure the continuous operation of the MMC-HVDC systems under the condition of three types of current sensor faults and its fault-tolerant capability is better than that of extended Kalman filter-based fault-tolerant control method.</div></div>","PeriodicalId":50547,"journal":{"name":"Electric Power Systems Research","volume":"238 ","pages":"Article 111144"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online DMD-based Kalman filter for current sensor fault-tolerant control of MMC-HVDC transmission systems\",\"authors\":\"Yuxi Liu , Yuexi Yang , Xiao Zhou , Yang Liu , Q.H. Wu\",\"doi\":\"10.1016/j.epsr.2024.111144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the growing application of modular multilevel converter based high-voltage direct current transmission (MMC-HVDC), the sensor fault-tolerant capability in modular multilevel converters has become critical. This paper aims to boost the sensor fault-tolerant performance of the MMC-HVDC systems using advanced data-driven techniques. A novel online dynamic mode decomposition based Kalman filter (ODMDKF) is designed for fault detection and control reconfiguration. Besides, a modified dual-check fault detection module based on local outlier factor algorithm is proposed to reduce false alarm rate. Simulation studies are conducted on a modified IEEE 9-bus system with MMC-HVDC transmission lines. The results indicate that the proposed sensor fault-tolerant control method can ensure the continuous operation of the MMC-HVDC systems under the condition of three types of current sensor faults and its fault-tolerant capability is better than that of extended Kalman filter-based fault-tolerant control method.</div></div>\",\"PeriodicalId\":50547,\"journal\":{\"name\":\"Electric Power Systems Research\",\"volume\":\"238 \",\"pages\":\"Article 111144\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electric Power Systems Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378779624010307\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electric Power Systems Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378779624010307","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Online DMD-based Kalman filter for current sensor fault-tolerant control of MMC-HVDC transmission systems
With the growing application of modular multilevel converter based high-voltage direct current transmission (MMC-HVDC), the sensor fault-tolerant capability in modular multilevel converters has become critical. This paper aims to boost the sensor fault-tolerant performance of the MMC-HVDC systems using advanced data-driven techniques. A novel online dynamic mode decomposition based Kalman filter (ODMDKF) is designed for fault detection and control reconfiguration. Besides, a modified dual-check fault detection module based on local outlier factor algorithm is proposed to reduce false alarm rate. Simulation studies are conducted on a modified IEEE 9-bus system with MMC-HVDC transmission lines. The results indicate that the proposed sensor fault-tolerant control method can ensure the continuous operation of the MMC-HVDC systems under the condition of three types of current sensor faults and its fault-tolerant capability is better than that of extended Kalman filter-based fault-tolerant control method.
期刊介绍:
Electric Power Systems Research is an international medium for the publication of original papers concerned with the generation, transmission, distribution and utilization of electrical energy. The journal aims at presenting important results of work in this field, whether in the form of applied research, development of new procedures or components, orginal application of existing knowledge or new designapproaches. The scope of Electric Power Systems Research is broad, encompassing all aspects of electric power systems. The following list of topics is not intended to be exhaustive, but rather to indicate topics that fall within the journal purview.
• Generation techniques ranging from advances in conventional electromechanical methods, through nuclear power generation, to renewable energy generation.
• Transmission, spanning the broad area from UHV (ac and dc) to network operation and protection, line routing and design.
• Substation work: equipment design, protection and control systems.
• Distribution techniques, equipment development, and smart grids.
• The utilization area from energy efficiency to distributed load levelling techniques.
• Systems studies including control techniques, planning, optimization methods, stability, security assessment and insulation coordination.