Valerio Mariani , Saverio Ottaviano , Davide Scampamorte , Andrea De Pascale , Giulio Cazzoli , Lisa Branchini , Gian Marco Bianchi
{"title":"利用机器学习算法优化有机郎肯循环的混合物设计","authors":"Valerio Mariani , Saverio Ottaviano , Davide Scampamorte , Andrea De Pascale , Giulio Cazzoli , Lisa Branchini , Gian Marco Bianchi","doi":"10.1016/j.ecmx.2024.100733","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a new design tool for working fluid mixtures in organic Rankine cycles. The proposed tool comprises a blend model for the thermophysical properties of the formulated mixtures, an ORC model<!--> <!-->to predict the performance of the mixtures in a specific application, and an optimizer based on the Bayesian inference method to identify the optimal mixtures compositions to be assessed. The tool is programmed to optimize an objective function based on predefined optimization targets. Importantly, the targets and their respective weights within the objective function can be adjusted to meet the specific requirements of the application under analysis, making this approach adaptable to diverse research and industrial objectives. The algorithm is applied to a case study to demonstrate its ability to define a low-GWP blend that can replace HFC-134a in a micro-scale ORC with recuperator, while maintaining and potentially enhancing performance. The optimization targets specified for the case study are the net power output, the net efficiency, the GWP and the blend size. Power and efficiency are computed through a validated model of the low-temperature ORC system used as benchmark case. The results showed that the procedure was able to formulate several blends that comply with the targets of the assigned task. Amongst the high-scoring mixtures, the most used pure fluids are R32, R152a, R1234yf, and R1234ze(E). The presence of HCs is limited to fewer mixtures, playing the main role of GWP-limiter. A method to estimate the flammability classification of the blends has been also applied, obtaining that most of them belong to the ASHRAE class 2l, except when an HC is present, in which case the fluid is may result in class 3.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100733"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal mixture design for organic Rankine cycle using machine learning algorithm\",\"authors\":\"Valerio Mariani , Saverio Ottaviano , Davide Scampamorte , Andrea De Pascale , Giulio Cazzoli , Lisa Branchini , Gian Marco Bianchi\",\"doi\":\"10.1016/j.ecmx.2024.100733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study presents a new design tool for working fluid mixtures in organic Rankine cycles. The proposed tool comprises a blend model for the thermophysical properties of the formulated mixtures, an ORC model<!--> <!-->to predict the performance of the mixtures in a specific application, and an optimizer based on the Bayesian inference method to identify the optimal mixtures compositions to be assessed. The tool is programmed to optimize an objective function based on predefined optimization targets. Importantly, the targets and their respective weights within the objective function can be adjusted to meet the specific requirements of the application under analysis, making this approach adaptable to diverse research and industrial objectives. The algorithm is applied to a case study to demonstrate its ability to define a low-GWP blend that can replace HFC-134a in a micro-scale ORC with recuperator, while maintaining and potentially enhancing performance. The optimization targets specified for the case study are the net power output, the net efficiency, the GWP and the blend size. Power and efficiency are computed through a validated model of the low-temperature ORC system used as benchmark case. The results showed that the procedure was able to formulate several blends that comply with the targets of the assigned task. Amongst the high-scoring mixtures, the most used pure fluids are R32, R152a, R1234yf, and R1234ze(E). The presence of HCs is limited to fewer mixtures, playing the main role of GWP-limiter. A method to estimate the flammability classification of the blends has been also applied, obtaining that most of them belong to the ASHRAE class 2l, except when an HC is present, in which case the fluid is may result in class 3.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"24 \",\"pages\":\"Article 100733\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524002113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimal mixture design for organic Rankine cycle using machine learning algorithm
This study presents a new design tool for working fluid mixtures in organic Rankine cycles. The proposed tool comprises a blend model for the thermophysical properties of the formulated mixtures, an ORC model to predict the performance of the mixtures in a specific application, and an optimizer based on the Bayesian inference method to identify the optimal mixtures compositions to be assessed. The tool is programmed to optimize an objective function based on predefined optimization targets. Importantly, the targets and their respective weights within the objective function can be adjusted to meet the specific requirements of the application under analysis, making this approach adaptable to diverse research and industrial objectives. The algorithm is applied to a case study to demonstrate its ability to define a low-GWP blend that can replace HFC-134a in a micro-scale ORC with recuperator, while maintaining and potentially enhancing performance. The optimization targets specified for the case study are the net power output, the net efficiency, the GWP and the blend size. Power and efficiency are computed through a validated model of the low-temperature ORC system used as benchmark case. The results showed that the procedure was able to formulate several blends that comply with the targets of the assigned task. Amongst the high-scoring mixtures, the most used pure fluids are R32, R152a, R1234yf, and R1234ze(E). The presence of HCs is limited to fewer mixtures, playing the main role of GWP-limiter. A method to estimate the flammability classification of the blends has been also applied, obtaining that most of them belong to the ASHRAE class 2l, except when an HC is present, in which case the fluid is may result in class 3.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.