Rahat Redwan , Mahmudul Hasan , Awatif Nadia , Md. Sabid Khan , Nishat Anjum Chowdhury , Nahid-Ur-Rahman Chowdhury
{"title":"孟加拉国达卡-马瓦高速公路光伏电动汽车充电站的设计分析和技术经济评估","authors":"Rahat Redwan , Mahmudul Hasan , Awatif Nadia , Md. Sabid Khan , Nishat Anjum Chowdhury , Nahid-Ur-Rahman Chowdhury","doi":"10.1016/j.ecmx.2024.100737","DOIUrl":null,"url":null,"abstract":"<div><div>Electric vehicles are crucial for sustainable transport and energy solutions, particularly in developing countries like Bangladesh where their popularity is rising. This study primarily focuses on the techno-economic design of a 300 kW<sub>p</sub> solar photovoltaic-powered electric vehicle charging station along the Dhaka-Mawa Expressway in Bangladesh, capable of charging 20 electric vehicles simultaneously. The design utilizes the commercially available software package PVsyst 7.2 to ensure the feasibility and efficiency of the charging infrastructure. The use of solar photovoltaics for electric vehicle charging, compared to traditional grid-based methods, offers substantial environmental benefits, including significant reductions in carbon emissions. This shift is driven by decreasing costs, improved module efficiencies, and increased environmental awareness. The estimated levelized cost of energy is calculated at 7.1556 BDT/kWh (BDT is Bangladeshi Taka), with an annual energy generation cost of 1436285.32 BDT. Over a projected lifespan of 25 years, the system is expected to replace 8065 tons of CO<sub>2</sub> emissions with its own emissions totaling 537.56 tons, resulting in a net decrease of 6460.2 tons of CO<sub>2</sub>. This approach not only aligns with Bangladesh’s emission reduction goals but also exemplifies the potential for solar photovoltaic systems to enhance sustainability in transportation. It also emphasizes the importance of integrating renewable energy sources into the electric vehicle-based infrastructure to achieve true sustainability and supports the country’s commitment to combating climate change through technological innovation.</div></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100737"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design analysis and techno-economic assessment of a photovoltaic-fed electric vehicle charging station at Dhaka-Mawa expressway in Bangladesh\",\"authors\":\"Rahat Redwan , Mahmudul Hasan , Awatif Nadia , Md. Sabid Khan , Nishat Anjum Chowdhury , Nahid-Ur-Rahman Chowdhury\",\"doi\":\"10.1016/j.ecmx.2024.100737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electric vehicles are crucial for sustainable transport and energy solutions, particularly in developing countries like Bangladesh where their popularity is rising. This study primarily focuses on the techno-economic design of a 300 kW<sub>p</sub> solar photovoltaic-powered electric vehicle charging station along the Dhaka-Mawa Expressway in Bangladesh, capable of charging 20 electric vehicles simultaneously. The design utilizes the commercially available software package PVsyst 7.2 to ensure the feasibility and efficiency of the charging infrastructure. The use of solar photovoltaics for electric vehicle charging, compared to traditional grid-based methods, offers substantial environmental benefits, including significant reductions in carbon emissions. This shift is driven by decreasing costs, improved module efficiencies, and increased environmental awareness. The estimated levelized cost of energy is calculated at 7.1556 BDT/kWh (BDT is Bangladeshi Taka), with an annual energy generation cost of 1436285.32 BDT. Over a projected lifespan of 25 years, the system is expected to replace 8065 tons of CO<sub>2</sub> emissions with its own emissions totaling 537.56 tons, resulting in a net decrease of 6460.2 tons of CO<sub>2</sub>. This approach not only aligns with Bangladesh’s emission reduction goals but also exemplifies the potential for solar photovoltaic systems to enhance sustainability in transportation. It also emphasizes the importance of integrating renewable energy sources into the electric vehicle-based infrastructure to achieve true sustainability and supports the country’s commitment to combating climate change through technological innovation.</div></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"24 \",\"pages\":\"Article 100737\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524002150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524002150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Design analysis and techno-economic assessment of a photovoltaic-fed electric vehicle charging station at Dhaka-Mawa expressway in Bangladesh
Electric vehicles are crucial for sustainable transport and energy solutions, particularly in developing countries like Bangladesh where their popularity is rising. This study primarily focuses on the techno-economic design of a 300 kWp solar photovoltaic-powered electric vehicle charging station along the Dhaka-Mawa Expressway in Bangladesh, capable of charging 20 electric vehicles simultaneously. The design utilizes the commercially available software package PVsyst 7.2 to ensure the feasibility and efficiency of the charging infrastructure. The use of solar photovoltaics for electric vehicle charging, compared to traditional grid-based methods, offers substantial environmental benefits, including significant reductions in carbon emissions. This shift is driven by decreasing costs, improved module efficiencies, and increased environmental awareness. The estimated levelized cost of energy is calculated at 7.1556 BDT/kWh (BDT is Bangladeshi Taka), with an annual energy generation cost of 1436285.32 BDT. Over a projected lifespan of 25 years, the system is expected to replace 8065 tons of CO2 emissions with its own emissions totaling 537.56 tons, resulting in a net decrease of 6460.2 tons of CO2. This approach not only aligns with Bangladesh’s emission reduction goals but also exemplifies the potential for solar photovoltaic systems to enhance sustainability in transportation. It also emphasizes the importance of integrating renewable energy sources into the electric vehicle-based infrastructure to achieve true sustainability and supports the country’s commitment to combating climate change through technological innovation.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.